中文版 | English
题名

Short-time and weak signal demodulation for fiber optic current sensors based on backpropagation neural network

作者
通讯作者Xia,Li
发表日期
2022-05-01
DOI
发表期刊
ISSN
0030-3992
EISSN
1879-2545
卷号149
摘要
It has been challenging to demodulate short-time and weak current signals collected by fiber optic current sensors (FOCSs) under ultra-high voltage, since the background noise can significantly affect the spectra of the current signals. To address this issue, here we propose a novel FOCS demodulation method based on backpropagation neural network, where the impact of the noise on the measurement can be largely reduced. The demodulation method can determine the amplitudes of short time series of weak currents with high resolution and accuracy. To evaluate the performance of the proposed method, the demodulation accuracy and robustness of the method are experimentally investigated and compared with those of the traditional fast Fourier transform (FFT) method. The experimental results show that our method can produce reliable results when demodulating weak current signals over short time windows of less than one period, and achieve a significantly lower standard deviation (6.7 mA) compared with the FFT method (15.6 mA) in the current range 0–0.306 A. The higher robustness against the background noise than the FFT method and the excellent repeatability of our demodulation method are also demonstrated through simulations. These results suggest that the proposed method will provide an effective way to improve the detection performances of FOCSs in fast dynamic measurements.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Science and Technology of State Grid Corporation of China: Research on the Design and Stability Control Technology of Multi-quantum Well Semiconductor Light Source for Optical Sensing[5700-202018483A-0-0-00]
WOS研究方向
Optics ; Physics
WOS类目
Optics ; Physics, Applied
WOS记录号
WOS:000806565800005
出版者
EI入藏号
20220511568852
EI主题词
Backpropagation ; Demodulation ; Electric current measurement ; Fiber optic sensors ; Fiber optics ; Neural networks ; Optical variables measurement
EI分类号
Artificial Intelligence:723.4 ; Fiber Optics:741.1.2 ; Mathematical Transformations:921.3 ; Optical Variables Measurements:941.4 ; Electric Variables Measurements:942.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85123737033
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/274465
专题工学院_电子与电气工程系
作者单位
1.School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan,430074,China
2.School of Instrument Science and Opto-electronics Engineering,Hefei University of Technology,Anhui,230009,China
3.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Wang,Zhuoying,Xia,Li,Cheng,Rui,et al. Short-time and weak signal demodulation for fiber optic current sensors based on backpropagation neural network[J]. OPTICS AND LASER TECHNOLOGY,2022,149.
APA
Wang,Zhuoying,Xia,Li,Cheng,Rui,Zuo,Guomeng,Li,Shiyu,&Yang,Zhao.(2022).Short-time and weak signal demodulation for fiber optic current sensors based on backpropagation neural network.OPTICS AND LASER TECHNOLOGY,149.
MLA
Wang,Zhuoying,et al."Short-time and weak signal demodulation for fiber optic current sensors based on backpropagation neural network".OPTICS AND LASER TECHNOLOGY 149(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Zhuoying]的文章
[Xia,Li]的文章
[Cheng,Rui]的文章
百度学术
百度学术中相似的文章
[Wang,Zhuoying]的文章
[Xia,Li]的文章
[Cheng,Rui]的文章
必应学术
必应学术中相似的文章
[Wang,Zhuoying]的文章
[Xia,Li]的文章
[Cheng,Rui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。