中文版 | English
题名

An Occlusion-Aware Framework for Real-Time 3D Pose Tracking

作者
通讯作者Fu, Mingliang
发表日期
2018-08
DOI
发表期刊
ISSN
1424-8220
卷号18期号:8
摘要
Random forest-based methods for 3D temporal tracking over an image sequence have gained increasing prominence in recent years. They do not require object's texture and only use the raw depth images and previous pose as input, which makes them especially suitable for textureless objects. These methods learn a built-in occlusion handling from predetermined occlusion patterns, which are not always able to model the real case. Besides, the input of random forest is mixed with more and more outliers as the occlusion deepens. In this paper, we propose an occlusion-aware framework capable of real-time and robust 3D pose tracking from RGB-D images. To this end, the proposed framework is anchored in the random forest-based learning strategy, referred to as RFtracker. We aim to enhance its performance from two aspects: integrated local refinement of random forest on one side, and online rendering based occlusion handling on the other. In order to eliminate the inconsistency between learning and prediction of RFtracker, a local refinement step is embedded to guide random forest towards the optimal regression. Furthermore, we present an online rendering-based occlusion handling to improve the robustness against dynamic occlusion. Meanwhile, a lightweight convolutional neural network-based motion-compensated (CMC) module is designed to cope with fast motion and inevitable physical delay caused by imaging frequency and data transmission. Finally, experiments show that our proposed framework can cope better with heavily-occluded scenes than RFtracker and preserve the real-time performance.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Science Foundation of China[51505470]
WOS研究方向
Chemistry ; Electrochemistry ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Electrochemistry ; Instruments & Instrumentation
WOS记录号
WOS:000445712400334
出版者
EI入藏号
20183505743776
EI主题词
Decision trees ; Motion compensation ; Neural networks ; Rendering (computer graphics)
EI分类号
Data Processing and Image Processing:723.2 ; Systems Science:961
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27457
专题工学院_机械与能源工程系
作者单位
1.Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Liaoning, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Fu, Mingliang,Leng, Yuquan,Luo, Haitao,et al. An Occlusion-Aware Framework for Real-Time 3D Pose Tracking[J]. SENSORS,2018,18(8).
APA
Fu, Mingliang,Leng, Yuquan,Luo, Haitao,&Zhou, Weijia.(2018).An Occlusion-Aware Framework for Real-Time 3D Pose Tracking.SENSORS,18(8).
MLA
Fu, Mingliang,et al."An Occlusion-Aware Framework for Real-Time 3D Pose Tracking".SENSORS 18.8(2018).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fu, Mingliang]的文章
[Leng, Yuquan]的文章
[Luo, Haitao]的文章
百度学术
百度学术中相似的文章
[Fu, Mingliang]的文章
[Leng, Yuquan]的文章
[Luo, Haitao]的文章
必应学术
必应学术中相似的文章
[Fu, Mingliang]的文章
[Leng, Yuquan]的文章
[Luo, Haitao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。