题名 | Separability-entanglement classifier via machine learning |
作者 | |
通讯作者 | Li, Jun; Lu, Dawei |
发表日期 | 2018-07-13
|
DOI | |
发表期刊 | |
ISSN | 2469-9926
|
EISSN | 2469-9934
|
卷号 | 98期号:1 |
摘要 | The problem of determining whether a given quantum state is entangled lies at the heart of quantum information processing. Despite the many methods-such as the positive partial transpose criterion and the k-symmetric extendibility criterion-to tackle this problem, none of them enables a general, practical solution due to the problem's NP-hard complexity. Explicitly, separable states form a high-dimensional convex set of vastly complicated structures. In this work, we build a different separability-entanglement classifier underpinned by machine learning techniques. We use standard tools from machine learning to learn the entanglement feature of arbitrary given quantum states. We perform substantial numerical tests on two-qubit and two-qutrit systems, and the results indicate that our method can outperform the existing methods in generic cases in terms of both speed and accuracy. This opens up avenues to explore quantum entanglement via the machine learning approach. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Key Research and Development Program of China[2016YFA0300603]
|
WOS研究方向 | Optics
; Physics
|
WOS类目 | Optics
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:000438489900006
|
出版者 | |
EI入藏号 | 20183005581927
|
EI主题词 | Artificial intelligence
; Computational complexity
; Learning systems
; Numerical methods
; Quantum optics
; Set theory
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Artificial Intelligence:723.4
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Numerical Methods:921.6
; Quantum Theory; Quantum Mechanics:931.4
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:91
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/27494 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China 2.Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada 3.Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China 4.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 5.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 6.Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada 7.Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA 8.Univ Technol Sydney, Fac Engn & Informat Technol, Sch Software, Ctr Quantum Software & Informat, Sydney, NSW, Australia 9.Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China 10.Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada 11.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China |
通讯作者单位 | 量子科学与工程研究院; 物理系 |
推荐引用方式 GB/T 7714 |
Lu, Sirui,Huang, Shilin,Li, Keren,et al. Separability-entanglement classifier via machine learning[J]. PHYSICAL REVIEW A,2018,98(1).
|
APA |
Lu, Sirui.,Huang, Shilin.,Li, Keren.,Li, Jun.,Chen, Jianxin.,...&Zeng, Bei.(2018).Separability-entanglement classifier via machine learning.PHYSICAL REVIEW A,98(1).
|
MLA |
Lu, Sirui,et al."Separability-entanglement classifier via machine learning".PHYSICAL REVIEW A 98.1(2018).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Lu-2018-Separability(1258KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论