中文版 | English
题名

Separability-entanglement classifier via machine learning

作者
通讯作者Li, Jun; Lu, Dawei
发表日期
2018-07-13
DOI
发表期刊
ISSN
2469-9926
EISSN
2469-9934
卷号98期号:1
摘要
The problem of determining whether a given quantum state is entangled lies at the heart of quantum information processing. Despite the many methods-such as the positive partial transpose criterion and the k-symmetric extendibility criterion-to tackle this problem, none of them enables a general, practical solution due to the problem's NP-hard complexity. Explicitly, separable states form a high-dimensional convex set of vastly complicated structures. In this work, we build a different separability-entanglement classifier underpinned by machine learning techniques. We use standard tools from machine learning to learn the entanglement feature of arbitrary given quantum states. We perform substantial numerical tests on two-qubit and two-qutrit systems, and the results indicate that our method can outperform the existing methods in generic cases in terms of both speed and accuracy. This opens up avenues to explore quantum entanglement via the machine learning approach.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key Research and Development Program of China[2016YFA0300603]
WOS研究方向
Optics ; Physics
WOS类目
Optics ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:000438489900006
出版者
EI入藏号
20183005581927
EI主题词
Artificial intelligence ; Computational complexity ; Learning systems ; Numerical methods ; Quantum optics ; Set theory
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Numerical Methods:921.6 ; Quantum Theory; Quantum Mechanics:931.4
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:91
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27494
专题量子科学与工程研究院
理学院_物理系
作者单位
1.Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
2.Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
3.Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
4.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
5.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
6.Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
7.Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
8.Univ Technol Sydney, Fac Engn & Informat Technol, Sch Software, Ctr Quantum Software & Informat, Sydney, NSW, Australia
9.Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China
10.Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
11.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
通讯作者单位量子科学与工程研究院;  物理系
推荐引用方式
GB/T 7714
Lu, Sirui,Huang, Shilin,Li, Keren,et al. Separability-entanglement classifier via machine learning[J]. PHYSICAL REVIEW A,2018,98(1).
APA
Lu, Sirui.,Huang, Shilin.,Li, Keren.,Li, Jun.,Chen, Jianxin.,...&Zeng, Bei.(2018).Separability-entanglement classifier via machine learning.PHYSICAL REVIEW A,98(1).
MLA
Lu, Sirui,et al."Separability-entanglement classifier via machine learning".PHYSICAL REVIEW A 98.1(2018).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Lu-2018-Separability(1258KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu, Sirui]的文章
[Huang, Shilin]的文章
[Li, Keren]的文章
百度学术
百度学术中相似的文章
[Lu, Sirui]的文章
[Huang, Shilin]的文章
[Li, Keren]的文章
必应学术
必应学术中相似的文章
[Lu, Sirui]的文章
[Huang, Shilin]的文章
[Li, Keren]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。