中文版 | English
题名

A class of ADMM-based algorithms for three-block separable convex programming

作者
通讯作者Yuan, Xiaoming
发表日期
2018-07
DOI
发表期刊
ISSN
0926-6003
EISSN
1573-2894
卷号70期号:3页码:791-826
摘要
The alternating direction method of multipliers (ADMM) recently has found many applications in various domains whose models can be represented or reformulated as a separable convex minimization model with linear constraints and an objective function in sum of two functions without coupled variables. For more complicated applications that can only be represented by such a multi-block separable convex minimization model whose objective function is the sum of more than two functions without coupled variables, it was recently shown that the direct extension of ADMM is not necessarily convergent. On the other hand, despite the lack of convergence, the direct extension of ADMM is empirically efficient for many applications. Thus we are interested in such an algorithm that can be implemented as easily as the direct extension of ADMM, while with comparable or even better numerical performance and guaranteed convergence. In this paper, we suggest correcting the output of the direct extension of ADMM slightly by a simple correction step. The correction step is simple in the sense that it is completely free from step-size computing and its step size is bounded away from zero for any iterate. A prototype algorithm in this prediction-correction framework is proposed; and a unified and easily checkable condition to ensure the convergence of this prototype algorithm is given. Theoretically, we show the contraction property, prove the global convergence and establish the worst-case convergence rate measured by the iteration complexity for this prototype algorithm. The analysis is conducted in the variational inequality context. Then, based on this prototype algorithm, we propose a class of specific ADMM-based algorithms that can be used for three-block separable convex minimization models. Their numerical efficiency is verified by an image decomposition problem.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Research Grants Council, University Grants Committee[HKBU 12313516]
WOS研究方向
Operations Research & Management Science ; Mathematics
WOS类目
Operations Research & Management Science ; Mathematics, Applied
WOS记录号
WOS:000434145000006
出版者
EI入藏号
20182405299883
EI主题词
Convex optimization ; Shrinkage ; Variational techniques
EI分类号
Calculus:921.2 ; Numerical Methods:921.6 ; Materials Science:951
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:26
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27539
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
2.Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
3.Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
第一作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
He, Bingsheng,Yuan, Xiaoming. A class of ADMM-based algorithms for three-block separable convex programming[J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS,2018,70(3):791-826.
APA
He, Bingsheng,&Yuan, Xiaoming.(2018).A class of ADMM-based algorithms for three-block separable convex programming.COMPUTATIONAL OPTIMIZATION AND APPLICATIONS,70(3),791-826.
MLA
He, Bingsheng,et al."A class of ADMM-based algorithms for three-block separable convex programming".COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 70.3(2018):791-826.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
He-2018-A class of A(2080KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He, Bingsheng]的文章
[Yuan, Xiaoming]的文章
百度学术
百度学术中相似的文章
[He, Bingsheng]的文章
[Yuan, Xiaoming]的文章
必应学术
必应学术中相似的文章
[He, Bingsheng]的文章
[Yuan, Xiaoming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。