中文版 | English
题名

Feature Selection via Swarm Intelligence for Determining Protein Essentiality

作者
通讯作者Lei, Xiujuan; Wu, Fang-Xiang
发表日期
2018-07
DOI
发表期刊
ISSN
1420-3049
EISSN
1420-3049
卷号23期号:7
摘要

Protein essentiality is fundamental to comprehend the function and evolution of genes. The prediction of protein essentiality is pivotal in identifying disease genes and potential drug targets. Since the experimental methods need many investments in time and funds, it is of great value to predict protein essentiality with high accuracy using computational methods. In this study, we present a novel feature selection named Elite Search mechanism-based Flower Pollination Algorithm (ESFPA) to determine protein essentiality. Unlike other protein essentiality prediction methods, ESFPA uses an improved swarm intelligence-based algorithm for feature selection and selects optimal features for protein essentiality prediction. The first step is to collect numerous features with the highly predictive characteristics of essentiality. The second step is to develop a feature selection strategy based on a swarm intelligence algorithm to obtain the optimal feature subset. Furthermore, an elite search mechanism is adopted to further improve the quality of feature subset. Subsequently a hybrid classifier is applied to evaluate the essentiality for each protein. Finally, the experimental results show that our method is competitive to some well-known feature selection methods. The proposed method aims to provide a new perspective for protein essentiality determination.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61672334] ; National Natural Science Foundation of China[61502290] ; National Natural Science Foundation of China[61401263]
WOS研究方向
Biochemistry & Molecular Biology ; Chemistry
WOS类目
Biochemistry & Molecular Biology ; Chemistry, Multidisciplinary
WOS记录号
WOS:000445301800072
出版者
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27542
专题工学院_计算机科学与工程系
作者单位
1.Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Shaanxi, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
3.Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N 5A9, Canada
4.Univ Saskatchewan, Div Biomed Engn, Saskatoon, SK S7N 5A9, Canada
推荐引用方式
GB/T 7714
Fang, Ming,Lei, Xiujuan,Cheng, Shi,et al. Feature Selection via Swarm Intelligence for Determining Protein Essentiality[J]. MOLECULES,2018,23(7).
APA
Fang, Ming,Lei, Xiujuan,Cheng, Shi,Shi, Yuhui,&Wu, Fang-Xiang.(2018).Feature Selection via Swarm Intelligence for Determining Protein Essentiality.MOLECULES,23(7).
MLA
Fang, Ming,et al."Feature Selection via Swarm Intelligence for Determining Protein Essentiality".MOLECULES 23.7(2018).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
molecules-23-01569.p(1277KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fang, Ming]的文章
[Lei, Xiujuan]的文章
[Cheng, Shi]的文章
百度学术
百度学术中相似的文章
[Fang, Ming]的文章
[Lei, Xiujuan]的文章
[Cheng, Shi]的文章
必应学术
必应学术中相似的文章
[Fang, Ming]的文章
[Lei, Xiujuan]的文章
[Cheng, Shi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: molecules-23-01569.pdf
格式: Adobe PDF
文件名: molecules-23-01569.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。