题名 | Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning |
作者 | |
通讯作者 | Li, Jingzhi; He, Zhubin |
发表日期 | 2018-07
|
DOI | |
发表期刊 | |
ISSN | 0378-4371
|
EISSN | 1873-2119
|
卷号 | 501页码:356-369 |
摘要 | In this paper, a stochastic optimization framework is proposed to address the microgrid energy dispatching problem with random renewable generation and vehicle activity pattern, which is closer to the practical applications. The patterns of energy generation, consumption and storage availability are all random and unknown at the beginning, and the microgrid controller design (MCD) is formulated as a Markov decision process (MDP). Hence, an online learning-based control algorithm is proposed for the microgrid, which could adapt the control policy with increasing knowledge of the system dynamics and converges to the optimal algorithm. We adopt the linear approximation idea to decompose the original value functions as the summation of each per-battery value function. As a consequence, the computational complexity is significantly reduced from exponential growth to linear growth with respect to the size of battery states. Monte Carlo simulation of different scenarios demonstrates the effectiveness and efficiency of our algorithm. (C) 2018 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Key research and development plan issue, China[2017YFC0602203]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000430027500032
|
出版者 | |
EI入藏号 | 20181004884074
|
EI主题词 | Controllers
; Intelligent systems
; Markov processes
; Monte Carlo methods
; Optimization
; Secondary batteries
|
EI分类号 | Secondary Batteries:702.1.2
; Electric Power Transmission:706.1.1
; Artificial Intelligence:723.4
; Control Equipment:732.1
; Optimization Techniques:921.5
; Probability Theory:922.1
; Mathematical Statistics:922.2
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/27549 |
专题 | 理学院_数学系 工学院_材料科学与工程系 |
作者单位 | 1.Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China 2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 4.Banque Pictet & Cie SA, Route Acacias 60, CH-1211 Geneva 73, Switzerland |
通讯作者单位 | 数学系; 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Kai,Li, Jingzhi,He, Zhubin,et al. Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning[J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS,2018,501:356-369.
|
APA |
Zhang, Kai,Li, Jingzhi,He, Zhubin,&Yan, Wanfeng.(2018).Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning.PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS,501,356-369.
|
MLA |
Zhang, Kai,et al."Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning".PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS 501(2018):356-369.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Zhang-2018-Microgrid(428KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论