中文版 | English
题名

FEMOSAA: Feature-Guided and Knee-Driven Multi-Objective Optimization for Self-Adaptive Software

作者
通讯作者Chen, Tao; Li, Ke; Yao, Xin
发表日期
2018-07
DOI
发表期刊
ISSN
1049-331X
EISSN
1557-7392
卷号27期号:2
摘要

Self-Adaptive Software (SAS) can reconfigure itself to adapt to the changing environment at runtime, aiming to continually optimize conflicted nonfunctional objectives (e.g., response time, energy consumption, throughput, cost, etc.). In this article, we present Feature-guided and knEe-driven Multi-Objective optimization for Self-Adaptive softwAre (FEMOSAA), a novel framework that automatically synergizes the feature model and Multi-Objective Evolutionary Algorithm (MOEA) to optimize SAS at runtime. FEMOSAA operates in two phases: at design time, FEMOSAA automatically transposes the engineers' design of SAS, expressed as a feature model, to fit the MOEA, creating new chromosome representation and reproduction operators. At runtime, FEMOSAA utilizes the feature model as domain knowledge to guide the search and further ex-tend the MOEA, providing a larger chance for finding better solutions. In addition, we have designed a new method to search for the knee solutions, which can achieve a balanced tradeoff. We comprehensively evaluated FEMOSAA on two running SAS: One is a highly complex SAS with various adaptable real-world software under the realistic workload trace; another is a service-oriented SAS that can be dynamically composed from services. In particular, we compared the effectiveness and overhead of FEMOSAA against four of its variants and three other search-based frameworks for SAS under various scenarios, including three commonly applied MOEAs, two workload patterns, and diverse conflicting quality objectives. The results reveal the effectiveness of FEMOSAA and its superiority over the others with high statistical significance and nontrivial effect sizes.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
EPSRC[EP/J017515/01] ; EPSRC[EP/K001523]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering
WOS记录号
WOS:000457127200001
出版者
EI入藏号
20184005886848
EI主题词
Adaptive Systems ; Computer Software ; Energy Utilization ; Evolutionary Algorithms
EI分类号
Energy Utilization:525.3 ; Computer Software, Data HAndling And Applications:723 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:48
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27550
专题工学院_计算机科学与工程系
作者单位
1.Nottingham Trent Univ, Dept Comp & Technol, Nottingham NG11 8NS, England
2.Univ Birmingham, Sch Comp Sci, CERCIA, Birmingham B15 2TT, W Midlands, England
3.Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Sichuan, Peoples R China
4.Univ Exeter, Dept Comp Sci, Exeter EX4 4QD, Devon, England
5.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
6.Univ Elect Sci & Technol 5 China, Chengdu, Sichuan, Peoples R China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen, Tao,Li, Ke,Bahsoon, Rami,et al. FEMOSAA: Feature-Guided and Knee-Driven Multi-Objective Optimization for Self-Adaptive Software[J]. ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,2018,27(2).
APA
Chen, Tao,Li, Ke,Bahsoon, Rami,&Yao, Xin.(2018).FEMOSAA: Feature-Guided and Knee-Driven Multi-Objective Optimization for Self-Adaptive Software.ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,27(2).
MLA
Chen, Tao,et al."FEMOSAA: Feature-Guided and Knee-Driven Multi-Objective Optimization for Self-Adaptive Software".ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY 27.2(2018).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
3204459.pdf(4556KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Tao]的文章
[Li, Ke]的文章
[Bahsoon, Rami]的文章
百度学术
百度学术中相似的文章
[Chen, Tao]的文章
[Li, Ke]的文章
[Bahsoon, Rami]的文章
必应学术
必应学术中相似的文章
[Chen, Tao]的文章
[Li, Ke]的文章
[Bahsoon, Rami]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。