中文版 | English
题名

A GPU-Outperforming FPGA Accelerator Architecture for Binary Convolutional Neural Networks

作者
通讯作者Li, Yixing
发表日期
2018-07
DOI
发表期刊
ISSN
1550-4832
EISSN
1550-4840
卷号14期号:2
摘要

FPGA-based hardware accelerators for convolutional neural networks (CNNs) have received attention due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU counterparts. In this article, we demonstrate that FPGA acceleration can be a superior solution in terms of both throughput and energy efficiency when a CNN is trained with binary constraints on weights and activations. Specifically, we propose an optimized fully mapped FPGA accelerator architecture tailored for bitwise convolution and normalization that features massive spatial parallelism with deep pipelines stages. A key advantage of the FPGA accelerator is that its performance is insensitive to data batch size, while the performance of GPU acceleration varies largely depending on the batch size of the data. Experiment results show that the proposed accelerator architecture for binary CNNs running on a Virtex-7 FPGA is 8.3x faster and 75x more energy-efficient than a Titan X GPU for processing online individual requests in small batch sizes. For processing static data in large batch sizes, the proposed solution is on a par with a Titan X GPU in terms of throughput while delivering 9.5x higher energy efficiency.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Singapore MOE Tier-2[MOE2015-T2-2-013]
WOS研究方向
Computer Science ; Engineering ; Science & Technology - Other Topics
WOS类目
Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Nanoscience & Nanotechnology
WOS记录号
WOS:000449159400005
出版者
EI入藏号
20183805830227
EI主题词
Acceleration ; Batch Data Processing ; Computer Hardware ; Convolution ; Data Handling ; Deep Learning ; Field Programmable Gate Arrays (Fpga) ; Graphics Processing Unit ; Hardware ; Network Architecture ; Neural Networks ; Pipeline Processing Systems ; Program Processors ; Throughput
EI分类号
Energy Conservation:525.2 ; Small Tools And Hardware:605 ; Information Theory And Signal Processing:716.1 ; Logic Elements:721.2 ; Computer Systems And Equipment:722 ; Digital Computers And Systems:722.4 ; Data Processing And Image Processing:723.2
来源库
Web of Science
引用统计
被引频次[WOS]:39
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27557
专题工学院_电子与电气工程系
作者单位
1.Arizona State Univ, 699 S Mill Ave 553, Tempe, AZ 85281 USA
2.Nanyang Technol Univ, 50 Nanyang Ave, Singapore 639798, Singapore
3.Southern Univ Sci & Technol, EE Dept, 1088 Xueyuan Rd, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Li, Yixing,Liu, Zichuan,Xu, Kai,et al. A GPU-Outperforming FPGA Accelerator Architecture for Binary Convolutional Neural Networks[J]. ACM Journal on Emerging Technologies in Computing Systems,2018,14(2).
APA
Li, Yixing,Liu, Zichuan,Xu, Kai,Yu, Hao,&Ren, Fengbo.(2018).A GPU-Outperforming FPGA Accelerator Architecture for Binary Convolutional Neural Networks.ACM Journal on Emerging Technologies in Computing Systems,14(2).
MLA
Li, Yixing,et al."A GPU-Outperforming FPGA Accelerator Architecture for Binary Convolutional Neural Networks".ACM Journal on Emerging Technologies in Computing Systems 14.2(2018).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Yixing]的文章
[Liu, Zichuan]的文章
[Xu, Kai]的文章
百度学术
百度学术中相似的文章
[Li, Yixing]的文章
[Liu, Zichuan]的文章
[Xu, Kai]的文章
必应学术
必应学术中相似的文章
[Li, Yixing]的文章
[Liu, Zichuan]的文章
[Xu, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。