题名 | Experimental Machine Learning of Quantum States |
作者 | |
通讯作者 | Yung, Man-Hong; Jin, Xian-Min |
发表日期 | 2018-06-11
|
DOI | |
发表期刊 | |
ISSN | 0031-9007
|
EISSN | 1079-7114
|
卷号 | 120期号:24 |
摘要 | Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in "big data." A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progress in both fields. Traditionally, a quantum state is characterized by quantum-state tomography, which is a resource-consuming process when scaled up. Here we experimentally demonstrate a machine-learning approach to construct a quantum-state classifier for identifying the separability of quantum states. We show that it is possible to experimentally train an artificial neural network to efficiently learn and classify quantum states, without the need of obtaining the full information of the states. We also show how adding a hidden layer of neurons to the neural network can significantly boost the performance of the state classifier. These results shed new light on how classification of quantum states can be achieved with limited resources, and represent a step towards machine-learning-based applications in quantum information processing. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 通讯
|
资助项目 | Science Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20170303165926217]
; Science Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170412152620376]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000434766600001
|
出版者 | |
EI入藏号 | 20182505339069
|
EI主题词 | Big data
; Classification (of information)
; Data mining
; Learning systems
; Neural networks
|
EI分类号 | Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
; Light/Optics:741.1
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:108
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/27611 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.Shanghai Jiao Tong Univ, Dept Phys & Astron, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China 2.Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China 3.Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China 4.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 5.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 6.Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China |
通讯作者单位 | 量子科学与工程研究院; 物理系 |
推荐引用方式 GB/T 7714 |
Gao, Jun,Qiao, Lu-Feng,Jiao, Zhi-Qiang,et al. Experimental Machine Learning of Quantum States[J]. PHYSICAL REVIEW LETTERS,2018,120(24).
|
APA |
Gao, Jun.,Qiao, Lu-Feng.,Jiao, Zhi-Qiang.,Ma, Yue-Chi.,Hu, Cheng-Qiu.,...&Jin, Xian-Min.(2018).Experimental Machine Learning of Quantum States.PHYSICAL REVIEW LETTERS,120(24).
|
MLA |
Gao, Jun,et al."Experimental Machine Learning of Quantum States".PHYSICAL REVIEW LETTERS 120.24(2018).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Gao-2018-Experimenta(2140KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论