中文版 | English
题名

Multi-clustering via evolutionary multi-objective optimization

作者
通讯作者Wang, Rui
发表日期
2018-06
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号450页码:128-140
摘要
The choice of the number of clusters (k) remains challenging for clustering methods. Instead of determining k, the implicit parallelism feature of evolutionary multi-objective optimization (EMO) provides an effective and efficient paradigm to find the optimal clustering in a posteriori manner. That is, first EMO algorithms are employed to search for a set of non-dominated solutions, representing different clustering results with different k. Then, a certain validity index is used to select the optimal clustering result. This study systematically investigates the use of EMO for multi-clustering (i.e., searching for multiple clustering simultaneously). An effective bi-objective model is built wherein the number of clusters and the sum of squared distances (SSD) between data points and their cluster centroids are considered as objectives. To ensure the two objectives are conflicting with each other, a novel transformation strategy is applied to the SSD. Then, the model is solved by an EMO algorithm. The derived paradigm, EMO-k-clustering, is examined on three datasets of different properties where NSGA-II serves as the EMO algorithm. Experimental results show that the proposed bi-objective model is effective. EMO-k-clustering is able to efficiently obtain all the clustering results for different k values in its single run. (C) 2018 Elsevier Inc. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
JSPS KAKENHI[16H02877] ; JSPS KAKENHI[26540128]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000432646100007
出版者
EI入藏号
20181304963160
EI主题词
Evolutionary algorithms ; Multiobjective optimization
EI分类号
Information Sources and Analysis:903.1 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:53
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27662
专题工学院_计算机科学与工程系
作者单位
1.Foshan Univ, Sch Math & Big Data, Foshan 528000, Peoples R China
2.Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Hunan, Peoples R China
3.Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
5.Osaka Prefecture Univ, Dept Comp Sci & Intelligent Syst, Osaka 5998531, Japan
推荐引用方式
GB/T 7714
Wang, Rui,Lai, Shiming,Wu, Guohua,et al. Multi-clustering via evolutionary multi-objective optimization[J]. INFORMATION SCIENCES,2018,450:128-140.
APA
Wang, Rui,Lai, Shiming,Wu, Guohua,Xing, Lining,Wang, Ling,&Ishibuchi, Hisao.(2018).Multi-clustering via evolutionary multi-objective optimization.INFORMATION SCIENCES,450,128-140.
MLA
Wang, Rui,et al."Multi-clustering via evolutionary multi-objective optimization".INFORMATION SCIENCES 450(2018):128-140.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Wang-2018-Multi-clus(1003KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Rui]的文章
[Lai, Shiming]的文章
[Wu, Guohua]的文章
百度学术
百度学术中相似的文章
[Wang, Rui]的文章
[Lai, Shiming]的文章
[Wu, Guohua]的文章
必应学术
必应学术中相似的文章
[Wang, Rui]的文章
[Lai, Shiming]的文章
[Wu, Guohua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。