题名 | Multi-clustering via evolutionary multi-objective optimization |
作者 | |
通讯作者 | Wang, Rui |
发表日期 | 2018-06
|
DOI | |
发表期刊 | |
ISSN | 0020-0255
|
EISSN | 1872-6291
|
卷号 | 450页码:128-140 |
摘要 | The choice of the number of clusters (k) remains challenging for clustering methods. Instead of determining k, the implicit parallelism feature of evolutionary multi-objective optimization (EMO) provides an effective and efficient paradigm to find the optimal clustering in a posteriori manner. That is, first EMO algorithms are employed to search for a set of non-dominated solutions, representing different clustering results with different k. Then, a certain validity index is used to select the optimal clustering result. This study systematically investigates the use of EMO for multi-clustering (i.e., searching for multiple clustering simultaneously). An effective bi-objective model is built wherein the number of clusters and the sum of squared distances (SSD) between data points and their cluster centroids are considered as objectives. To ensure the two objectives are conflicting with each other, a novel transformation strategy is applied to the SSD. Then, the model is solved by an EMO algorithm. The derived paradigm, EMO-k-clustering, is examined on three datasets of different properties where NSGA-II serves as the EMO algorithm. Experimental results show that the proposed bi-objective model is effective. EMO-k-clustering is able to efficiently obtain all the clustering results for different k values in its single run. (C) 2018 Elsevier Inc. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | JSPS KAKENHI[16H02877]
; JSPS KAKENHI[26540128]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
|
WOS记录号 | WOS:000432646100007
|
出版者 | |
EI入藏号 | 20181304963160
|
EI主题词 | Evolutionary algorithms
; Multiobjective optimization
|
EI分类号 | Information Sources and Analysis:903.1
; Optimization Techniques:921.5
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:53
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/27662 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Foshan Univ, Sch Math & Big Data, Foshan 528000, Peoples R China 2.Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Hunan, Peoples R China 3.Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China 4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China 5.Osaka Prefecture Univ, Dept Comp Sci & Intelligent Syst, Osaka 5998531, Japan |
推荐引用方式 GB/T 7714 |
Wang, Rui,Lai, Shiming,Wu, Guohua,et al. Multi-clustering via evolutionary multi-objective optimization[J]. INFORMATION SCIENCES,2018,450:128-140.
|
APA |
Wang, Rui,Lai, Shiming,Wu, Guohua,Xing, Lining,Wang, Ling,&Ishibuchi, Hisao.(2018).Multi-clustering via evolutionary multi-objective optimization.INFORMATION SCIENCES,450,128-140.
|
MLA |
Wang, Rui,et al."Multi-clustering via evolutionary multi-objective optimization".INFORMATION SCIENCES 450(2018):128-140.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Wang-2018-Multi-clus(1003KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论