中文版 | English
题名

Automatic spin-chain learning to explore the quantum speed limit

作者
通讯作者Wang, Xin; Yung, Man-Hong
发表日期
2018-05-30
DOI
发表期刊
ISSN
2469-9926
EISSN
2469-9934
卷号97期号:5
摘要
One of the ambitious goals of artificial intelligence is to build a machine that outperforms human intelligence, even if limited knowledge and data are provided. Reinforcement learning (RL) provides one such possibility to reach this goal. In this work, we consider a specific task from quantum physics, i.e., quantum state transfer in a one-dimensional spin chain. The mission for the machine is to find transfer schemes with the fastest speeds while maintaining high transfer fidelities. The first scenario we consider is when the Hamiltonian is time independent. We update the coupling strength by minimizing a loss function dependent on both the fidelity and the speed. Compared with a scheme proven to be at the quantum speed limit for the perfect state transfer, the scheme provided by RL is faster while maintaining the infidelity below 5 x 10(-4). In the second scenario where a time-dependent external field is introduced, we convert the state transfer process into a Markov decision process that can be understood by the machine. We solve it with the deep Q-learning algorithm. After training, the machine successfully finds transfer schemes with high fidelities and speeds, which are faster than previously known ones. These results show that reinforcement learning can be a powerful tool for quantum control problems.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Science, Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20170303165926217] ; Science, Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170412152620376]
WOS研究方向
Optics ; Physics
WOS类目
Optics ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:000433418300003
出版者
EI入藏号
20182405303288
EI主题词
Chains ; Couplings ; Deep learning ; Learning algorithms ; Markov processes ; Quantum theory ; Speed ; Spin dynamics
EI分类号
Mechanical Drives:602.1 ; Artificial Intelligence:723.4 ; Probability Theory:922.1 ; Atomic and Molecular Physics:931.3 ; Quantum Theory; Quantum Mechanics:931.4
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:59
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27691
专题量子科学与工程研究院
理学院_物理系
作者单位
1.City Univ Hong Kong, Dept Phys, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
2.City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
3.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
5.Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位量子科学与工程研究院;  物理系
推荐引用方式
GB/T 7714
Zhang, Xiao-Ming,Cui, Zi-Wei,Wang, Xin,et al. Automatic spin-chain learning to explore the quantum speed limit[J]. PHYSICAL REVIEW A,2018,97(5).
APA
Zhang, Xiao-Ming,Cui, Zi-Wei,Wang, Xin,&Yung, Man-Hong.(2018).Automatic spin-chain learning to explore the quantum speed limit.PHYSICAL REVIEW A,97(5).
MLA
Zhang, Xiao-Ming,et al."Automatic spin-chain learning to explore the quantum speed limit".PHYSICAL REVIEW A 97.5(2018).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Zhang-2018-Automatic(625KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiao-Ming]的文章
[Cui, Zi-Wei]的文章
[Wang, Xin]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiao-Ming]的文章
[Cui, Zi-Wei]的文章
[Wang, Xin]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiao-Ming]的文章
[Cui, Zi-Wei]的文章
[Wang, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。