中文版 | English
题名

Predicting permeability from 3D rock images based on CNN with physical information

作者
通讯作者Zhang,Dongxiao
发表日期
2022-03-01
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号606
摘要
Permeability is one of the most important properties in subsurface flow problems, which measures the ability of rocks to transmit fluid. Normally, permeability is determined through experiments and numerical simulations, both of which are time-consuming. In this paper, we propose a new effective method based on convolutional neural networks with physical information (CNN) to rapidly evaluate rock permeability from its three-dimensional (3D) image. In order to obtain sufficient reliable labeled data, rock image reconstruction is utilized to generate sufficient samples based on the Joshi-Quiblier-Adler method. Next, the corresponding permeability is calculated using the Lattice Boltzmann method. We compare the prediction performance of CNN and convolutional neural networks (CNNs). The results demonstrate that CNN achieves superior performance, especially in the case of a small dataset and an out-of-range problem. Moreover, the performance of both CNN and CNN is greatly improved combined with transfer learning in the case of an out-of-range problem. This opens novel pathways for rapidly predicting permeability in subsurface applications.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Shenzhen Key Laboratory of Natural Gas Hydrates[ZDSYS20200421111201738]
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:000752810500003
出版者
EI入藏号
20220411495068
EI主题词
Convolution ; Deep learning ; Forecasting ; Image reconstruction ; Mechanical permeability ; Rocks
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85123027892
来源库
Scopus
引用统计
被引频次[WOS]:40
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/277898
专题工学院_环境科学与工程学院
作者单位
1.Department of Energy and Resources Engineering,College of Engineering,Peking University,Beijing,100871,China
2.Shenzhen Key Laboratory of Natural Gas Hydrates,Southern University of Science and Technology,Shenzhen,518055,China
3.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Intelligent Energy Laboratory,Peng Cheng Laboratory,Shenzhen,518000,China
5.School of Earth Resources,China University of Geosciences,Wuhan,430074,China
通讯作者单位南方科技大学;  环境科学与工程学院
推荐引用方式
GB/T 7714
Tang,Pengfei,Zhang,Dongxiao,Li,Heng. Predicting permeability from 3D rock images based on CNN with physical information[J]. JOURNAL OF HYDROLOGY,2022,606.
APA
Tang,Pengfei,Zhang,Dongxiao,&Li,Heng.(2022).Predicting permeability from 3D rock images based on CNN with physical information.JOURNAL OF HYDROLOGY,606.
MLA
Tang,Pengfei,et al."Predicting permeability from 3D rock images based on CNN with physical information".JOURNAL OF HYDROLOGY 606(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tang,Pengfei]的文章
[Zhang,Dongxiao]的文章
[Li,Heng]的文章
百度学术
百度学术中相似的文章
[Tang,Pengfei]的文章
[Zhang,Dongxiao]的文章
[Li,Heng]的文章
必应学术
必应学术中相似的文章
[Tang,Pengfei]的文章
[Zhang,Dongxiao]的文章
[Li,Heng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。