中文版 | English
题名

Neural-network-designed pulse sequences for robust control of singlet-triplet qubits

作者
通讯作者Wang, Xin
发表日期
2018-04-16
DOI
发表期刊
ISSN
2469-9926
EISSN
2469-9934
卷号97期号:4
摘要
Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Science, Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20170303165926217] ; Science, Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170412152620376]
WOS研究方向
Optics ; Physics
WOS类目
Optics ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:000430054000001
出版者
EI入藏号
20181705036896
EI主题词
Nonlinear equations ; Quantum computers ; Robust control
EI分类号
Computer Systems and Equipment:722 ; Computer Software, Data Handling and Applications:723 ; Automatic Control Principles and Applications:731
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:30
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27814
专题量子科学与工程研究院
理学院_物理系
作者单位
1.City Univ Hong Kong, Dept Phys, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
2.City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
3.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
5.Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Yang, Xu-Chen,Yung, Man-Hong,Wang, Xin. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits[J]. PHYSICAL REVIEW A,2018,97(4).
APA
Yang, Xu-Chen,Yung, Man-Hong,&Wang, Xin.(2018).Neural-network-designed pulse sequences for robust control of singlet-triplet qubits.PHYSICAL REVIEW A,97(4).
MLA
Yang, Xu-Chen,et al."Neural-network-designed pulse sequences for robust control of singlet-triplet qubits".PHYSICAL REVIEW A 97.4(2018).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Xu-Chen]的文章
[Yung, Man-Hong]的文章
[Wang, Xin]的文章
百度学术
百度学术中相似的文章
[Yang, Xu-Chen]的文章
[Yung, Man-Hong]的文章
[Wang, Xin]的文章
必应学术
必应学术中相似的文章
[Yang, Xu-Chen]的文章
[Yung, Man-Hong]的文章
[Wang, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。