题名 | Neural-network-designed pulse sequences for robust control of singlet-triplet qubits |
作者 | |
通讯作者 | Wang, Xin |
发表日期 | 2018-04-16
|
DOI | |
发表期刊 | |
ISSN | 2469-9926
|
EISSN | 2469-9934
|
卷号 | 97期号:4 |
摘要 | Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Science, Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20170303165926217]
; Science, Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170412152620376]
|
WOS研究方向 | Optics
; Physics
|
WOS类目 | Optics
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:000430054000001
|
出版者 | |
EI入藏号 | 20181705036896
|
EI主题词 | Nonlinear equations
; Quantum computers
; Robust control
|
EI分类号 | Computer Systems and Equipment:722
; Computer Software, Data Handling and Applications:723
; Automatic Control Principles and Applications:731
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:30
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/27814 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.City Univ Hong Kong, Dept Phys, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China 2.City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China 3.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 5.Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Yang, Xu-Chen,Yung, Man-Hong,Wang, Xin. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits[J]. PHYSICAL REVIEW A,2018,97(4).
|
APA |
Yang, Xu-Chen,Yung, Man-Hong,&Wang, Xin.(2018).Neural-network-designed pulse sequences for robust control of singlet-triplet qubits.PHYSICAL REVIEW A,97(4).
|
MLA |
Yang, Xu-Chen,et al."Neural-network-designed pulse sequences for robust control of singlet-triplet qubits".PHYSICAL REVIEW A 97.4(2018).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论