中文版 | English
题名

Sign-Agnostic Implicit Learning of Surface Self-Similarities for Shape Modeling and Reconstruction from Raw Point Clouds

作者
通讯作者Jia, Kui
DOI
发表日期
2021
会议名称
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISSN
1063-6919
ISBN
978-1-6654-4510-8
会议录名称
页码
10251-10260
会议日期
JUN 19-25, 2021
会议地点
null,null,ELECTR NETWORK
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Shape modeling and reconstruction from raw point clouds of objects stand as a fundamental challenge in vision and graphics research. Classical methods consider analytic shape priors; however, their performance is degraded when the scanned points deviate from the ideal conditions of cleanness and completeness. Important progress has been recently made by data-driven approaches, which learn global and/or local models of implicit surface representations from auxiliary sets of training shapes. Motivated from a universal phenomenon that self-similar shape patterns of local surface patches repeat across the entire surface of an object, we aim to push forward the data-driven strategies and propose to learn a local implicit surface network for a shared, adaptive modeling of the entire surface for a direct surface reconstruction from raw point cloud; we also enhance the leveraging of surface self-similarities by improving correlations among the optimized latent codes of individual surface patches. Given that orientations of raw points could be unavailable or noisy, we extend signagnostic learning into our local implicit model, which enables our recovery of signed implicit fields of local surfaces from the unsigned inputs. We term our framework as Sign-Agnostic Implicit Learning of Surface Self-Similarities (SAIL-S3). With a global post-optimization of local sign flipping, SAIL-S3 is able to directly model raw, un-oriented point clouds and reconstruct high-quality object surfaces. Experiments show its superiority over existing methods.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61771201] ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X183] ; Guangdong R&D key project of China[2019B010155001]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:000742075000025
EI入藏号
20220411509742
EI主题词
Computer vision ; Learning systems
EI分类号
Computer Applications:723.5 ; Vision:741.2
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9577621
引用统计
被引频次[WOS]:8
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/278171
专题工学院_计算机科学与工程系
作者单位
1.South China Univ Technol, Guangzhou, Peoples R China
2.Pazhou Lab, Guangzhou, Peoples R China
3.Peng Cheng Lab, Shenzhen, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Wenbin,Lei, Jiabao,Wen, Yuxin,et al. Sign-Agnostic Implicit Learning of Surface Self-Similarities for Shape Modeling and Reconstruction from Raw Point Clouds[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021:10251-10260.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@CVPR46437.20(5519KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao, Wenbin]的文章
[Lei, Jiabao]的文章
[Wen, Yuxin]的文章
百度学术
百度学术中相似的文章
[Zhao, Wenbin]的文章
[Lei, Jiabao]的文章
[Wen, Yuxin]的文章
必应学术
必应学术中相似的文章
[Zhao, Wenbin]的文章
[Lei, Jiabao]的文章
[Wen, Yuxin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR46437.2021.01012.pdf
格式: Adobe PDF
文件名: 10.1109@CVPR46437.2021.01012.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。