题名 | Sign-Agnostic Implicit Learning of Surface Self-Similarities for Shape Modeling and Reconstruction from Raw Point Clouds |
作者 | |
通讯作者 | Jia, Kui |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
|
ISSN | 1063-6919
|
ISBN | 978-1-6654-4510-8
|
会议录名称 | |
页码 | 10251-10260
|
会议日期 | JUN 19-25, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Shape modeling and reconstruction from raw point clouds of objects stand as a fundamental challenge in vision and graphics research. Classical methods consider analytic shape priors; however, their performance is degraded when the scanned points deviate from the ideal conditions of cleanness and completeness. Important progress has been recently made by data-driven approaches, which learn global and/or local models of implicit surface representations from auxiliary sets of training shapes. Motivated from a universal phenomenon that self-similar shape patterns of local surface patches repeat across the entire surface of an object, we aim to push forward the data-driven strategies and propose to learn a local implicit surface network for a shared, adaptive modeling of the entire surface for a direct surface reconstruction from raw point cloud; we also enhance the leveraging of surface self-similarities by improving correlations among the optimized latent codes of individual surface patches. Given that orientations of raw points could be unavailable or noisy, we extend signagnostic learning into our local implicit model, which enables our recovery of signed implicit fields of local surfaces from the unsigned inputs. We term our framework as Sign-Agnostic Implicit Learning of Surface Self-Similarities (SAIL-S3). With a global post-optimization of local sign flipping, SAIL-S3 is able to directly model raw, un-oriented point clouds and reconstruct high-quality object surfaces. Experiments show its superiority over existing methods. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61771201]
; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X183]
; Guangdong R&D key project of China[2019B010155001]
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000742075000025
|
EI入藏号 | 20220411509742
|
EI主题词 | Computer vision
; Learning systems
|
EI分类号 | Computer Applications:723.5
; Vision:741.2
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9577621 |
引用统计 |
被引频次[WOS]:8
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/278171 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.South China Univ Technol, Guangzhou, Peoples R China 2.Pazhou Lab, Guangzhou, Peoples R China 3.Peng Cheng Lab, Shenzhen, Peoples R China 4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 |
Zhao, Wenbin,Lei, Jiabao,Wen, Yuxin,et al. Sign-Agnostic Implicit Learning of Surface Self-Similarities for Shape Modeling and Reconstruction from Raw Point Clouds[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021:10251-10260.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1109@CVPR46437.20(5519KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论