中文版 | English
题名

Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography

作者
通讯作者Zhao, Xing; Zhu, Yining
发表日期
2022-02-07
DOI
发表期刊
ISSN
0031-9155
EISSN
1361-6560
卷号67期号:3
摘要
Several reconstruction networks have been invented to solve the problem of learning-based computed tomography (CT) reconstruction. However, the application of neural networks to tomographic reconstruction remains challenging due to unacceptable memory space requirements. In this study, we present a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which respectively correspond to the filter and back-projection of the FBP method. The first module of the LBRN decouples the relationship of the Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection, can use the block reconstruction strategy. Because each image block is only connected with part-filtered projection data, the network structure is greatly simplified and the parameters of the whole network are dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data, and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest, metal artifact reduction and a real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China["61 827 809","61 971 293"] ; National Key Research and Development Program of China[2020YFA0712200]
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000749840400001
出版者
EI入藏号
20220911732713
EI主题词
Data reduction ; Deep neural networks ; Image reconstruction ; Image segmentation
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5
ESI学科分类
MOLECULAR BIOLOGY & GENETICS
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/278985
专题南方科技大学
作者单位
1.Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen Natl Appl Math Ctr, Shenzhen, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Ma, Genwei,Zhao, Xing,Zhu, Yining,et al. Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography[J]. PHYSICS IN MEDICINE AND BIOLOGY,2022,67(3).
APA
Ma, Genwei,Zhao, Xing,Zhu, Yining,&Zhang, Huitao.(2022).Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography.PHYSICS IN MEDICINE AND BIOLOGY,67(3).
MLA
Ma, Genwei,et al."Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography".PHYSICS IN MEDICINE AND BIOLOGY 67.3(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ma, Genwei]的文章
[Zhao, Xing]的文章
[Zhu, Yining]的文章
百度学术
百度学术中相似的文章
[Ma, Genwei]的文章
[Zhao, Xing]的文章
[Zhu, Yining]的文章
必应学术
必应学术中相似的文章
[Ma, Genwei]的文章
[Zhao, Xing]的文章
[Zhu, Yining]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。