中文版 | English
题名

Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies

作者
通讯作者Jiang, Jiping
发表日期
2018-01
DOI
发表期刊
ISSN
0048-9697
EISSN
1879-1026
卷号610页码:1390-1399
摘要
It is critical for surface water management systems to provide earlywarnings of abrupt, large variations inwater quality, which likely indicate the occurrence of spill incidents. In this study, a combined approach integrating a wavelet artificial neural network (wavelet-ANN) model and high-frequency surrogate measurements is proposed as a method of water quality anomaly detection and warning provision. High-frequency time series of major water quality indexes (TN, TP, COD, etc.) were produced via a regression-based surrogate model. After wavelet decomposition and denoising, a low-frequency signalwas imported into a back-propagation neural network for one-step prediction to identify the major features of water quality variations. The precisely trained sitespecific wavelet-ANN outputs the time series of residual errors. A warning is triggered when the actual residual error exceeds a given threshold, i.e., baseline pattern, estimated based on long-term water quality variations. A case study based on the monitoring programapplied to the Potomac River Basin in Virginia, USA, was conducted. The integrated approach successfully identified two anomaly events of TP variations at a 15-minute scale from high-frequency online sensors. A storm event and point source inputs likely accounted for these events. The results showthat the wavelet-ANN model is slightly more accurate than the ANN for high-frequency surfacewater quality prediction, and it meets the requirements of anomaly detection. Analyses of the performance at different stations and over different periods illustrated the stability of the proposed method. By combining monitoring instruments and surrogate measures, the presented approach can support timely anomaly identification and be applied to urban aquatic environments for watershed management. (C) 2017 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Southern University of Science and Technology[G01296001]
WOS研究方向
Environmental Sciences & Ecology
WOS类目
Environmental Sciences
WOS记录号
WOS:000411897700142
出版者
EI入藏号
20173504096815
EI主题词
Anomaly detection ; Backpropagation ; Neural networks ; Soil conservation ; Time series ; Water conservation ; Water management ; Water quality ; Wavelet decomposition
EI分类号
Water Resources:444 ; Surface Water:444.1 ; Water Analysis:445.2 ; Soils and Soil Mechanics:483.1 ; Artificial Intelligence:723.4 ; Mathematical Transformations:921.3 ; Mathematical Statistics:922.2
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:81
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/28203
专题工学院_环境科学与工程学院
作者单位
1.Harbin Inst Technol, Sch Environm, Harbin 150090, Heilongjiang, Peoples R China
2.Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
3.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Shi, Bin,Wang, Peng,Jiang, Jiping,et al. Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2018,610:1390-1399.
APA
Shi, Bin,Wang, Peng,Jiang, Jiping,&Liu, Rentao.(2018).Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies.SCIENCE OF THE TOTAL ENVIRONMENT,610,1390-1399.
MLA
Shi, Bin,et al."Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies".SCIENCE OF THE TOTAL ENVIRONMENT 610(2018):1390-1399.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Shi-2018-Applying hi(1349KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shi, Bin]的文章
[Wang, Peng]的文章
[Jiang, Jiping]的文章
百度学术
百度学术中相似的文章
[Shi, Bin]的文章
[Wang, Peng]的文章
[Jiang, Jiping]的文章
必应学术
必应学术中相似的文章
[Shi, Bin]的文章
[Wang, Peng]的文章
[Jiang, Jiping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。