中文版 | English
题名

Convergence of Unregularized Online Learning Algorithms

作者
通讯作者Guo, Zheng-Chu
发表日期
2018
发表期刊
ISSN
1532-4435
卷号18页码:1-33
摘要
In this paper we study the convergence of online gradient descent algorithms in reproducing kernel Hilbert spaces (RKHSs) without regularization. We establish a sufficient condition and a necessary condition for the convergence of excess generalization errors in expectation. A sufficient condition for the almost sure convergence is also given. With high probability, we provide explicit convergence rates of the excess generalization errors for both averaged iterates and the last iterate, which in turn also imply convergence rates with probability one. To our best knowledge, this is the first high-probability convergence rate for the last iterate of online gradient descent algorithms in the general convex setting. Without any boundedness assumptions on iterates, our results are derived by a novel use of two measures of the algorithm's one-step progress, respectively by generalization errors and by distances in RKHSs, where the variances of the involved martingales are cancelled out by the descent property of the algorithm.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Program of Shanghai Subject Chief Scientist[18XD1400700]
WOS研究方向
Automation & Control Systems ; Computer Science
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence
WOS记录号
WOS:000435442100001
出版者
EI入藏号
20182605362261
EI主题词
Errors ; Hilbert spaces ; Iterative methods ; Learning algorithms ; Probability ; Vector spaces
EI分类号
Mathematics:921 ; Numerical Methods:921.6 ; Probability Theory:922.1
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/28308
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Peoples R China
2.City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
3.Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Sch Math Sci, Shanghai 200433, Peoples R China
4.Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Lei, Yunwen,Shi, Lei,Guo, Zheng-Chu. Convergence of Unregularized Online Learning Algorithms[J]. JOURNAL OF MACHINE LEARNING RESEARCH,2018,18:1-33.
APA
Lei, Yunwen,Shi, Lei,&Guo, Zheng-Chu.(2018).Convergence of Unregularized Online Learning Algorithms.JOURNAL OF MACHINE LEARNING RESEARCH,18,1-33.
MLA
Lei, Yunwen,et al."Convergence of Unregularized Online Learning Algorithms".JOURNAL OF MACHINE LEARNING RESEARCH 18(2018):1-33.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lei, Yunwen]的文章
[Shi, Lei]的文章
[Guo, Zheng-Chu]的文章
百度学术
百度学术中相似的文章
[Lei, Yunwen]的文章
[Shi, Lei]的文章
[Guo, Zheng-Chu]的文章
必应学术
必应学术中相似的文章
[Lei, Yunwen]的文章
[Shi, Lei]的文章
[Guo, Zheng-Chu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。