题名 | Convergence of Unregularized Online Learning Algorithms |
作者 | |
通讯作者 | Guo, Zheng-Chu |
发表日期 | 2018
|
发表期刊 | |
ISSN | 1532-4435
|
卷号 | 18页码:1-33 |
摘要 | In this paper we study the convergence of online gradient descent algorithms in reproducing kernel Hilbert spaces (RKHSs) without regularization. We establish a sufficient condition and a necessary condition for the convergence of excess generalization errors in expectation. A sufficient condition for the almost sure convergence is also given. With high probability, we provide explicit convergence rates of the excess generalization errors for both averaged iterates and the last iterate, which in turn also imply convergence rates with probability one. To our best knowledge, this is the first high-probability convergence rate for the last iterate of online gradient descent algorithms in the general convex setting. Without any boundedness assumptions on iterates, our results are derived by a novel use of two measures of the algorithm's one-step progress, respectively by generalization errors and by distances in RKHSs, where the variances of the involved martingales are cancelled out by the descent property of the algorithm. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | Program of Shanghai Subject Chief Scientist[18XD1400700]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000435442100001
|
出版者 | |
EI入藏号 | 20182605362261
|
EI主题词 | Errors
; Hilbert spaces
; Iterative methods
; Learning algorithms
; Probability
; Vector spaces
|
EI分类号 | Mathematics:921
; Numerical Methods:921.6
; Probability Theory:922.1
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/28308 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Peoples R China 2.City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China 3.Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Sch Math Sci, Shanghai 200433, Peoples R China 4.Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Lei, Yunwen,Shi, Lei,Guo, Zheng-Chu. Convergence of Unregularized Online Learning Algorithms[J]. JOURNAL OF MACHINE LEARNING RESEARCH,2018,18:1-33.
|
APA |
Lei, Yunwen,Shi, Lei,&Guo, Zheng-Chu.(2018).Convergence of Unregularized Online Learning Algorithms.JOURNAL OF MACHINE LEARNING RESEARCH,18,1-33.
|
MLA |
Lei, Yunwen,et al."Convergence of Unregularized Online Learning Algorithms".JOURNAL OF MACHINE LEARNING RESEARCH 18(2018):1-33.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论