中文版 | English
题名

Supervised Feature Selection With a Stratified Feature Weighting Method

作者
通讯作者Chen, Xiaojun; Wu, Qingyao
发表日期
2018
DOI
发表期刊
ISSN
2169-3536
卷号6页码:15087-15098
摘要
Feature selection has been a powerful tool to handle high-dimensional data. Most of these methods are biased toward the highest rank features which may be highly correlated with each other. In this paper, we address this problem proposing stratified feature ranking (SFR) method for supervised feature ranking of high-dimensional data. Given a dataset with class labels, we first propose a subspace feature clustering (SFC) to simultaneously identify feature clusters and the importance of each feature for each class. In the SFR method, the features in different feature clusters are separately ranked according to the subspace weight produced by SFC. After that, we propose a stratified feature weighting method for ranking the features such that the high rank features are both informative and diverse. We have conducted a series of experiments to verify the effectiveness and scalability of SFC for feature clustering. The proposed SFR method was compared with six feature selection methods on a set of high-dimensional datasets and the results show that SFR was superior to most of these feature selection methods.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
CCF-Tencent Open Research Fund[RAGR20170105]
WOS研究方向
Computer Science ; Engineering ; Telecommunications
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000428961000001
出版者
EI入藏号
20181204918854
EI主题词
Clustering algorithms ; Computer programming ; Correlation methods ; Data mining ; Electronic mail ; Job analysis ; Linear programming
EI分类号
Computer Programming:723.1 ; Data Processing and Image Processing:723.2 ; Information Sources and Analysis:903.1 ; Mathematical Statistics:922.2
来源库
Web of Science
引用统计
被引频次[WOS]:35
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/28310
专题南方科技大学
实验室与设备管理部
作者单位
1.South China Univ Technol, Sch Software Engn, Guangzhou 510006, Guangdong, Peoples R China
2.South Univ Sci & Technol, Lab & Equipment Management Dept, Shenzhen 518055, Peoples R China
3.Shenzhen Univ, Coll Comp Sci & Software, Shenzhen 518060, Peoples R China
4.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Chen, Renjie,Sun, Ning,Chen, Xiaojun,et al. Supervised Feature Selection With a Stratified Feature Weighting Method[J]. IEEE Access,2018,6:15087-15098.
APA
Chen, Renjie,Sun, Ning,Chen, Xiaojun,Yang, Min,&Wu, Qingyao.(2018).Supervised Feature Selection With a Stratified Feature Weighting Method.IEEE Access,6,15087-15098.
MLA
Chen, Renjie,et al."Supervised Feature Selection With a Stratified Feature Weighting Method".IEEE Access 6(2018):15087-15098.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Renjie]的文章
[Sun, Ning]的文章
[Chen, Xiaojun]的文章
百度学术
百度学术中相似的文章
[Chen, Renjie]的文章
[Sun, Ning]的文章
[Chen, Xiaojun]的文章
必应学术
必应学术中相似的文章
[Chen, Renjie]的文章
[Sun, Ning]的文章
[Chen, Xiaojun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。