中文版 | English
题名

Particle swarm optimizer with two differential mutation

作者
通讯作者Li, Lixiang
发表日期
2017-12
DOI
发表期刊
ISSN
1568-4946
EISSN
1872-9681
卷号61页码:314-330
摘要
In this article, a particle swarm optimization algorithm with two differential mutation (PSOTD) is proposed. In PSOTD, a novel structure with two swarms and two layers (bottom layer and top layer) is designed. The top layer consists of all the personal best particles, and the bottom layer consists of all the particles. We divide the particles in the top layer into two sub-swarms. Two different differential mutation operations with two different control parameters are employed in order to breed the particles in the top layer. Thus, one sub-swarm has a good exploration capability, and the other sub-swarm has a good exploitation capability. Obviously, since the top layer leads the bottom layer, the bottom particles achieve a good trade-off between exploration and exploitation. Under the searching structure, PSO enhances the global search capability and search efficiency. In order to test the performance of PSOTD, 44 benchmark functions widely adopted in the literature are used. The experimental results demonstrate that the proposed PSOTD outperforms most of the other tested variants of the PSO in terms of both solution quality and efficiency. (C) 2017 Published by Elsevier B.V.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61472045] ; National Natural Science Foundation of China[61573067] ; National Natural Science Foundation of China[61771071] ; National Natural Science Foundation of China[61273367]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000417629800023
出版者
EI入藏号
20173604107965
EI主题词
Benchmarking ; Economic and social effects ; Efficiency ; Global optimization ; Swarm intelligence
EI分类号
Production Engineering:913.1 ; Optimization Techniques:921.5 ; Social Sciences:971
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:60
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/28379
专题工学院_计算机科学与工程系
作者单位
1.Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
2.Henan Univ Sci & Technol, Informat Engn Coll, Luoyang 471023, Peoples R China
3.Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China
4.Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
5.Southern Univ Sci & Technol, Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Chen, Yonggang,Li, Lixiang,Peng, Haipeng,et al. Particle swarm optimizer with two differential mutation[J]. APPLIED SOFT COMPUTING,2017,61:314-330.
APA
Chen, Yonggang,Li, Lixiang,Peng, Haipeng,Xiao, Jinghua,Yang, Yixian,&Shi, Yuhui.(2017).Particle swarm optimizer with two differential mutation.APPLIED SOFT COMPUTING,61,314-330.
MLA
Chen, Yonggang,et al."Particle swarm optimizer with two differential mutation".APPLIED SOFT COMPUTING 61(2017):314-330.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Chen-2017-Particle s(2077KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Yonggang]的文章
[Li, Lixiang]的文章
[Peng, Haipeng]的文章
百度学术
百度学术中相似的文章
[Chen, Yonggang]的文章
[Li, Lixiang]的文章
[Peng, Haipeng]的文章
必应学术
必应学术中相似的文章
[Chen, Yonggang]的文章
[Li, Lixiang]的文章
[Peng, Haipeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。