题名 | Particle swarm optimizer with two differential mutation |
作者 | |
通讯作者 | Li, Lixiang |
发表日期 | 2017-12
|
DOI | |
发表期刊 | |
ISSN | 1568-4946
|
EISSN | 1872-9681
|
卷号 | 61页码:314-330 |
摘要 | In this article, a particle swarm optimization algorithm with two differential mutation (PSOTD) is proposed. In PSOTD, a novel structure with two swarms and two layers (bottom layer and top layer) is designed. The top layer consists of all the personal best particles, and the bottom layer consists of all the particles. We divide the particles in the top layer into two sub-swarms. Two different differential mutation operations with two different control parameters are employed in order to breed the particles in the top layer. Thus, one sub-swarm has a good exploration capability, and the other sub-swarm has a good exploitation capability. Obviously, since the top layer leads the bottom layer, the bottom particles achieve a good trade-off between exploration and exploitation. Under the searching structure, PSO enhances the global search capability and search efficiency. In order to test the performance of PSOTD, 44 benchmark functions widely adopted in the literature are used. The experimental results demonstrate that the proposed PSOTD outperforms most of the other tested variants of the PSO in terms of both solution quality and efficiency. (C) 2017 Published by Elsevier B.V. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[61472045]
; National Natural Science Foundation of China[61573067]
; National Natural Science Foundation of China[61771071]
; National Natural Science Foundation of China[61273367]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
|
WOS记录号 | WOS:000417629800023
|
出版者 | |
EI入藏号 | 20173604107965
|
EI主题词 | Benchmarking
; Economic and social effects
; Efficiency
; Global optimization
; Swarm intelligence
|
EI分类号 | Production Engineering:913.1
; Optimization Techniques:921.5
; Social Sciences:971
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:60
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/28379 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China 2.Henan Univ Sci & Technol, Informat Engn Coll, Luoyang 471023, Peoples R China 3.Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China 4.Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China 5.Southern Univ Sci & Technol, Comp Sci & Engn, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 |
Chen, Yonggang,Li, Lixiang,Peng, Haipeng,et al. Particle swarm optimizer with two differential mutation[J]. APPLIED SOFT COMPUTING,2017,61:314-330.
|
APA |
Chen, Yonggang,Li, Lixiang,Peng, Haipeng,Xiao, Jinghua,Yang, Yixian,&Shi, Yuhui.(2017).Particle swarm optimizer with two differential mutation.APPLIED SOFT COMPUTING,61,314-330.
|
MLA |
Chen, Yonggang,et al."Particle swarm optimizer with two differential mutation".APPLIED SOFT COMPUTING 61(2017):314-330.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Chen-2017-Particle s(2077KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论