题名 | A Fast Numerical Method for Solving Coupled Burgers' Equations |
作者 | |
通讯作者 | Cao, Yong; Li, Jingzhi |
发表日期 | 2017-11
|
DOI | |
发表期刊 | |
ISSN | 0749-159X
|
EISSN | 1098-2426
|
卷号 | 33期号:6页码:1823-1838 |
摘要 | A new fast numerical scheme is proposed for solving time-dependent coupled Burgers' equations. The idea of operator splitting is used to decompose the original problem into nonlinear pure convection subproblems and diffusion subproblems at each time step. Using Taylor's expansion, the nonlinearity in convection subproblems is explicitly treated by resolving a linear convection system with artificial inflow boundary conditions that can be independently solved. A multistep technique is proposed to rescue the possible instability caused by the explicit treatment of the convection system. Meanwhile, the diffusion subproblems are always self-adjoint and coercive at each time step, and they can be efficiently solved by some existing preconditioned iterative solvers like the preconditioned conjugate galerkin method, and so forth. With the help of finite element discretization, all the major stiffness matrices remain invariant during the time marching process, which makes the present approach extremely fast for the time-dependent nonlinear problems. Finally, several numerical examples are performed to verify the stability, convergence and performance of the new method. (c) 2017 Wiley Periodicals, Inc. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | China Postdoctoral Science Foundation[2014M560252]
; China Postdoctoral Science Foundation[2015T80333]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000423263500002
|
出版者 | |
EI入藏号 | 20171703602453
|
EI主题词 | Control Nonlinearities
; Finite Element Method
; Galerkin Methods
; Iterative Methods
; Stiffness Matrix
|
EI分类号 | Control Systems:731.1
; Algebra:921.1
; Numerical Methods:921.6
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:12
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/28487 |
专题 | 理学院_数学系 工学院_材料科学与工程系 |
作者单位 | 1.Harbin Inst Technol, Shenzhen Grad Sch, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China 2.East China Normal Univ, Dept Math, Shanghai, Peoples R China 3.Shanghai Key Lab Pure Math & Math Practice, Shanghai, Peoples R China 4.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China 5.Wayne State Univ, Dept Math, Detroit, MI 48202 USA |
通讯作者单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Shi, Feng,Zheng, Haibiao,Cao, Yong,et al. A Fast Numerical Method for Solving Coupled Burgers' Equations[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,2017,33(6):1823-1838.
|
APA |
Shi, Feng,Zheng, Haibiao,Cao, Yong,Li, Jingzhi,&Zhao, Ren.(2017).A Fast Numerical Method for Solving Coupled Burgers' Equations.NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,33(6),1823-1838.
|
MLA |
Shi, Feng,et al."A Fast Numerical Method for Solving Coupled Burgers' Equations".NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 33.6(2017):1823-1838.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
num.22160.pdf(2264KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论