中文版 | English
题名

Improving the robustness and performance of parallel joins over distributed systems

作者
通讯作者Cheng, Long
发表日期
2017-11
DOI
发表期刊
ISSN
0743-7315
EISSN
1096-0848
卷号109页码:310-323
摘要
High-performance data processing systems typically utilize numerous servers with large amounts of memory. An essential operation in such environment is the parallel join, the performance of which is critical for data intensive operations. In many real-world workloads, data skew is omnipresent. Techniques that do not cater for the possibility of data skew often suffer from performance failures and memory problems. State-of-the-art methods designed to handle data skew propose new ways to distribute computation that avoid hotspots. However, this comes at the expense of global collection of statistics, redundant computation, duplication of data or increased network communication. In this light, performance could be further improved by removing the dependency on global skew knowledge and broadcasting. In this paper, we propose a new method called PRPQ (partial redistribution & partial query), with targets for efficient and robust joins with large datasets over high performance clusters. We present the detailed implementation of our approach and compare its performance with current implementations. The experimental results demonstrate that the proposed algorithm is scalable and robust and can also outperform the state-of-the-art approach with less network communication, figures that confirm our theoretical analysis. (C) 2017 Elsevier Inc. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Emmy Noether grant[KR 4381/1-1]
WOS研究方向
Computer Science
WOS类目
Computer Science, Theory & Methods
WOS记录号
WOS:000408298400023
出版者
EI入藏号
20173003966884
EI主题词
Artificial intelligence ; Computer programming
EI分类号
Computer Software, Data Handling and Applications:723
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/28496
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Eindhoven Univ Technol, Eindhoven, Netherlands
2.Tech Univ Dresden, Dresden, Germany
3.IBM Res, Dublin, Ireland
4.Maynooth Univ, Maynooth, Kildare, Ireland
5.Southern Univ Sci & Technol, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Long,Kotoulas, Spyros,Ward, Tomas E.,et al. Improving the robustness and performance of parallel joins over distributed systems[J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING,2017,109:310-323.
APA
Cheng, Long,Kotoulas, Spyros,Ward, Tomas E.,&Theodoropoulos, Georgios.(2017).Improving the robustness and performance of parallel joins over distributed systems.JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING,109,310-323.
MLA
Cheng, Long,et al."Improving the robustness and performance of parallel joins over distributed systems".JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 109(2017):310-323.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Cheng-2017-Improving(992KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng, Long]的文章
[Kotoulas, Spyros]的文章
[Ward, Tomas E.]的文章
百度学术
百度学术中相似的文章
[Cheng, Long]的文章
[Kotoulas, Spyros]的文章
[Ward, Tomas E.]的文章
必应学术
必应学术中相似的文章
[Cheng, Long]的文章
[Kotoulas, Spyros]的文章
[Ward, Tomas E.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。