中文版 | English
题名

Cooperative two-engine multi-objective bee foraging algorithm with reinforcement learning

作者
通讯作者Huang, Min
发表日期
2017-10
DOI
发表期刊
ISSN
0950-7051
EISSN
1872-7409
卷号133页码:278-293
摘要

This paper proposes a novel multi-objective bee foraging algorithm (MOBFA) based on two-engine co-evolution mechanism for solving multi-objective optimization problems. The proposed MOBFA aims to handle the convergence and diversity separately via evolving two cooperative search engines with different evolution rules. Specifically, in the colony-level interaction, the primary concept is to first assign two different performance evaluation principles (i.e., Pareto-based measure and indicator-based measure) to the two engines for evolving each archive respectively, and then use the comprehensive learning mechanism over the two archives to boost the population diversity. In the individual-level foraging, the neighbor-discount-information (NDI) learning based on reinforcement learning (RL) is integrated into the single-objective searching to adjust the flight trajectories of foraging bee. By testing on a suit of benchmark functions, the proposed MOBFA is verified experimentally to be superior or at least comparable to its competitors in terms of two commonly used metrics IGD and SPREAD. (C) 2017 Elsevier B.V. All rights reserved.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Fundamental Research Funds for the Central Universities[N161705001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000411775600021
出版者
EI入藏号
20173003982062
EI主题词
Indicators (Instruments) ; Machine Learning ; Pareto Principle ; Reinforcement Learning ; Search Engines
EI分类号
Computer Software, Data HAndling And Applications:723 ; Artificial Intelligence:723.4 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:23
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/28576
专题工学院_计算机科学与工程系
作者单位
1.Northeastern Univ, Coll Software, Shenyang, Liaoning, Peoples R China
2.Shaanxi Normal Univ, Coll Sch Comp Sci, Xian, Shaanxi, Peoples R China
3.Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Liaoning, Peoples R China
4.Cent S Univ, Coll Informat Sci & Engn, Changsha, Hunan, Peoples R China
5.Shenyang Normal Univ, Coll Phys Sci & Technol, Shenyang 110034, Liaoning, Peoples R China
6.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Ma, Lianbo,Cheng, Shi,Wang, Xingwei,et al. Cooperative two-engine multi-objective bee foraging algorithm with reinforcement learning[J]. KNOWLEDGE-BASED SYSTEMS,2017,133:278-293.
APA
Ma, Lianbo.,Cheng, Shi.,Wang, Xingwei.,Huang, Min.,Shen, Hai.,...&Shi, Yuhui.(2017).Cooperative two-engine multi-objective bee foraging algorithm with reinforcement learning.KNOWLEDGE-BASED SYSTEMS,133,278-293.
MLA
Ma, Lianbo,et al."Cooperative two-engine multi-objective bee foraging algorithm with reinforcement learning".KNOWLEDGE-BASED SYSTEMS 133(2017):278-293.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
1-s2.0-S095070511730(1485KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ma, Lianbo]的文章
[Cheng, Shi]的文章
[Wang, Xingwei]的文章
百度学术
百度学术中相似的文章
[Ma, Lianbo]的文章
[Cheng, Shi]的文章
[Wang, Xingwei]的文章
必应学术
必应学术中相似的文章
[Ma, Lianbo]的文章
[Cheng, Shi]的文章
[Wang, Xingwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。