中文版 | English
题名

Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy

作者
通讯作者Fang, Peng; Li, Guanglin
发表日期
2017-09-27
DOI
发表期刊
ISSN
1662-5218
卷号11期号:SEP
摘要

Electromyogram (EMG) contains rich information for motion decoding. As one of its major applications, EMG-pattern recognition (PR)-based control of prostheses has been proposed and investigated in the field of rehabilitation robotics for decades. These prostheses can offer a higher level of dexterity compared to the commercially available ones. However, limited progress has been made toward clinical application of EMG-PR-based prostheses, due to their unsatisfactory robustness against various interferences during daily use. These interferences may lead to misclassifications of motion intentions, which damage the control performance of EMG-PR-based prostheses. A number of studies have applied methods that undergo a postprocessing stage to determine the current motion outputs, based on previous outputs or other information, which have proved effective in reducing erroneous outputs. In this study, we proposed a postprocessing strategy that locks the outputs during the constant contraction to block out occasional misclassifications, upon detecting the motion onset using a threshold. The strategy was investigated using three different motion onset detectors, namely mean absolute value, Teager Kaiser energy operator, or mechanomyogram (MMG). Our results indicate that the proposed strategy could suppress erroneous outputs, during rest and constant contractions in particular. In addition, with MMG as the motion onset detector, the strategy was found to produce the most significant improvement in the performance, reducing the total errors up to around 50% (from 22.9 to 11.5%) in comparison to the original classification output in the online test, and it is the most robust against threshold value changes. We speculate that motion onset detectors that are both smooth and responsive would further enhance the efficacy of the proposed postprocessing strategy, which would facilitate the clinical application of EMG-PR-based prosthetic control.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Shenzhen Graduate School, Peking University[KQCX2015033117354152] ; Natural Science Foundation of Guangdong Province[2015TQ01C399] ; Natural Science Foundation of Guangdong Province[2014A030306029] ; [#JCYJ20160610152828679] ; National Natural Science Foundation of China[91420301] ; [2013CB329505]
WOS研究方向
Computer Science ; Robotics ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Robotics ; Neurosciences
WOS记录号
WOS:000411993300001
出版者
EI入藏号
20174004228612
EI主题词
Biomedical Signal Processing ; Myoelectrically Controlled Prosthetics ; Robotics ; Robust Control ; Robustness (Control Systems)
EI分类号
Rehabilitation Engineering And Assistive Technology:461.5 ; Information Theory And Signal Processing:716.1 ; Automatic Control Principles And Applications:731
来源库
Web of Science
引用统计
被引频次[WOS]:22
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/28605
专题工学院_生物医学工程系
作者单位
1.Chinese Acad Sci, Shenzhen Inst Adv Technol, CAS Key Lab Human Machine Intelligence Synergy Sy, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Dept Biomed Engn, Shenzhen, Peoples R China
3.Univ Connecticut, Dept Biomed Engn, Storrs, CT USA
4.Univ Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
5.Panyu Ctr Hosp, Dept Rehabil Med, Guangzhou, Guangdong, Peoples R China
第一作者单位生物医学工程系
推荐引用方式
GB/T 7714
Zhang, Xu,Li, Xiangxin,Samuel, Oluwarotimi Williams,et al. Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy[J]. Frontiers in Neurorobotics,2017,11(SEP).
APA
Zhang, Xu,Li, Xiangxin,Samuel, Oluwarotimi Williams,Huang, Zhen,Fang, Peng,&Li, Guanglin.(2017).Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy.Frontiers in Neurorobotics,11(SEP).
MLA
Zhang, Xu,et al."Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy".Frontiers in Neurorobotics 11.SEP(2017).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
fnbot-11-00051.pdf(3955KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Xu]的文章
[Li, Xiangxin]的文章
[Samuel, Oluwarotimi Williams]的文章
百度学术
百度学术中相似的文章
[Zhang, Xu]的文章
[Li, Xiangxin]的文章
[Samuel, Oluwarotimi Williams]的文章
必应学术
必应学术中相似的文章
[Zhang, Xu]的文章
[Li, Xiangxin]的文章
[Samuel, Oluwarotimi Williams]的文章
相关权益政策
暂无数据
收藏/分享
文件名: fnbot-11-00051.pdf
格式: Adobe PDF
文件名: fnbot-11-00051.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。