题名 | Batalin-Vilkovisky quantization and the algebraic index |
作者 | |
通讯作者 | Grady, Ryan E. |
发表日期 | 2017-09-07
|
DOI | |
发表期刊 | |
ISSN | 0001-8708
|
EISSN | 1090-2082
|
卷号 | 317页码:575-639 |
摘要 | Into a geometric setting, we import the physical interpretation of index theorems via semi-classical analysis in topological quantum field theory. We develop a direct relationship between Fedosov's deformation quantization of a symplectic manifold X and the Batalin-Vilkovisky (BV) quantization of a one-dimensional sigma model with target X. This model is a quantum field theory of AKSZ type and is quantized rigorously using Costello's homotopic theory of effective renormalization. We show that Fedosov's Abelian connections on the Weyl bundle produce solutions to the effective quantum master equation. Moreover, BV integration produces a natural trace map on the deformation quantized algebra. This formulation allows us to exploit a (rigorous) localization argument in quantum field theory to deduce the algebraic index theorem via semi-classical analysis, i.e., one loop Feynman diagram computations. (C) 2017 Elsevier Inc. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics
|
WOS记录号 | WOS:000408071900017
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:24
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/28634 |
专题 | 南方科技大学 理学院_数学系 |
作者单位 | 1.Montana State Univ, Bozeman, MT 59717 USA 2.Southern Univ Sci & Technol, Shenzhen, Peoples R China 3.Tsinghua Univ, YMSC, Beijing 100084, Peoples R China |
推荐引用方式 GB/T 7714 |
Grady, Ryan E.,Li, Qin,Li, Si. Batalin-Vilkovisky quantization and the algebraic index[J]. ADVANCES IN MATHEMATICS,2017,317:575-639.
|
APA |
Grady, Ryan E.,Li, Qin,&Li, Si.(2017).Batalin-Vilkovisky quantization and the algebraic index.ADVANCES IN MATHEMATICS,317,575-639.
|
MLA |
Grady, Ryan E.,et al."Batalin-Vilkovisky quantization and the algebraic index".ADVANCES IN MATHEMATICS 317(2017):575-639.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
1-s2.0-S000187081530(886KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论