中文版 | English
题名

A utility-based link prediction method in social networks

作者
通讯作者Li, Yongli; Luo, Peng
发表日期
2017-07-16
DOI
发表期刊
ISSN
0377-2217
EISSN
1872-6860
卷号260期号:2页码:693-705
摘要
Link prediction is a fundamental task in social networks, with the goal of estimating the likelihood of a link between each node pair. It can be applied in many situations, such as friend discovery on social media platforms or co-author recommendations in collaboration networks. Compared to the numerous traditional methods, this paper introduces utility analysis to the link prediction method by considering that individual preferences are the main reason behind the decision to form links, and meanwhile it also focuses on the meeting process that is a latent variable during the process of forming links. Accordingly, the link prediction problem is formulated as a machine learning process with latent variables; therefore, an Expectation Maximization (EM, for short) algorithm is adopted and further developed to cope with the estimation problem. The performance of the present method is tested both on synthetic networks and on real-world datasets from social media networks and collaboration networks. All of the computational results illustrate that the proposed method yields more satisfying link prediction results than the selected benchmarks, and in particular, logistic regression, as a special case of the proposed method, provides the lower boundary of the likelihood function. (C) 2016 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI ; SSCI
语种
英语
学校署名
其他
资助项目
Social Science Fund of Liaoning Province[L15CGL014]
WOS研究方向
Business & Economics ; Operations Research & Management Science
WOS类目
Management ; Operations Research & Management Science
WOS记录号
WOS:000396952700025
出版者
EI入藏号
20170203232163
EI主题词
Equivalence classes ; Learning algorithms ; Learning systems ; Networks (circuits) ; Social networking (online)
EI分类号
Electric Networks:703.1 ; Computer Software, Data Handling and Applications:723
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:28
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/28783
专题理学院_数学系
商学院_金融系
金融数学与金融工程系
作者单位
1.Northeastern Univ, Sch Business Adm, Shenyang 110169, Peoples R China
2.Harbin Inst Technol, Sch Management, Harbin 150001, Peoples R China
3.South Univ Sci & Technol China, Dept Financial Math & Financial Engn, Shenzhen 518055, Peoples R China
4.Dalian Maritime Univ, Transportat Management Coll, Dalian 116026, Peoples R China
推荐引用方式
GB/T 7714
Li, Yongli,Luo, Peng,Fan, Zhi-ping,et al. A utility-based link prediction method in social networks[J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH,2017,260(2):693-705.
APA
Li, Yongli,Luo, Peng,Fan, Zhi-ping,Chen, Kun,&Liu, Jiaguo.(2017).A utility-based link prediction method in social networks.EUROPEAN JOURNAL OF OPERATIONAL RESEARCH,260(2),693-705.
MLA
Li, Yongli,et al."A utility-based link prediction method in social networks".EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 260.2(2017):693-705.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Li-2017-A utility-ba(1460KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Yongli]的文章
[Luo, Peng]的文章
[Fan, Zhi-ping]的文章
百度学术
百度学术中相似的文章
[Li, Yongli]的文章
[Luo, Peng]的文章
[Fan, Zhi-ping]的文章
必应学术
必应学术中相似的文章
[Li, Yongli]的文章
[Luo, Peng]的文章
[Fan, Zhi-ping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。