题名 | Cubic arc-transitive k-multicirculants |
作者 | |
通讯作者 | Giudici, Michael |
发表日期 | 2017-07
|
DOI | |
发表期刊 | |
ISSN | 0095-8956
|
EISSN | 1096-0902
|
卷号 | 125页码:80-94 |
摘要 | For an integer k >= 1, a graph is called a k-multicirculant if its automorphism group contains a cyclic semiregular subgroup with k orbits on the vertices. If k is even, there exist infinitely many cubic arc-transitive k-multicirculants. We conjecture that, if k is odd, then a cubic arc-transitive k-multicirculant has order at most 6k(2). Our main result is a proof of this conjecture when k is squarefree and coprime to 6. (C) 2017 Elsevier Inc. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Slovenian Research Agency[P1-0285]
; Slovenian Research Agency[N1-0032]
; Slovenian Research Agency[N1-0038]
; Slovenian Research Agency[J1-5433]
; Slovenian Research Agency[J1-6720]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics
|
WOS记录号 | WOS:000401214600004
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/28832 |
专题 | 理学院_数学系 |
作者单位 | 1.Univ Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia 2.Univ Primorska, IAM, Glagoljaska 8, SI-6000 Koper, Slovenia 3.Univ Primorska, FAMNIT, Glagoljaska 8, SI-6000 Koper, Slovenia 4.South Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China 5.Univ Auckland, Dept Math, Private Bag 92019, Auckland 1142, New Zealand |
推荐引用方式 GB/T 7714 |
Giudici, Michael,Kovacs, Istvan,Li, Cai Heng,et al. Cubic arc-transitive k-multicirculants[J]. JOURNAL OF COMBINATORIAL THEORY SERIES B,2017,125:80-94.
|
APA |
Giudici, Michael,Kovacs, Istvan,Li, Cai Heng,&Verret, Gabriel.(2017).Cubic arc-transitive k-multicirculants.JOURNAL OF COMBINATORIAL THEORY SERIES B,125,80-94.
|
MLA |
Giudici, Michael,et al."Cubic arc-transitive k-multicirculants".JOURNAL OF COMBINATORIAL THEORY SERIES B 125(2017):80-94.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
1-s2.0-S009589561730(415KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论