中文版 | English
题名

An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems

作者
通讯作者Yuan, Xiaoming
发表日期
2017-06
DOI
发表期刊
ISSN
0924-9907
EISSN
1573-7683
卷号58期号:2页码:279-293
摘要

The primal-dual hybrid gradient method (PDHG) originates from the Arrow-Hurwicz method, and it has been widely used to solve saddle point problems, particularly in image processing areas. With the introduction of a combination parameter, Chambolle and Pock proposed a generalized PDHG scheme with both theoretical and numerical advantages. It has been analyzed that except for the special case where the combination parameter is 1, the PDHG cannot be casted to the proximal point algorithm framework due to the lack of symmetry in the matrix associated with the proximal regularization terms. The PDHG scheme is nonsymmetric also in the sense that one variable is updated twice while the other is only updated once at each iteration. These nonsymmetry features also explain why more theoretical issues remain challenging for generalized PDHG schemes; for example, the worst-case convergence rate of PDHG measured by the iteration complexity in a nonergodic sense is still missing. In this paper, we further consider how to generalize the PDHG and propose an algorithmic framework of generalized PDHG schemes for saddle point problems. This algorithmic framework allows the output of the PDHG subroutine to be further updated by correction steps with constant step sizes. We investigate the restriction onto these step sizes and conduct the convergence analysis for the algorithmic framework. The algorithmic framework turns out to include some existing PDHG schemes as special cases, and it immediately yields a class of new generalized PDHG schemes by choosing different step sizes for the correction steps. In particular, a completely symmetric PDHG scheme with the golden-ratio step sizes is included. Theoretically, an advantage of the algorithmic framework is that the worst-case convergence rate measured by the iteration complexity in both the ergodic and nonergodic senses can be established.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
General Research Fund from Hong Kong Research Grants Council[HKBU12300515]
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Mathematics, Applied
WOS记录号
WOS:000399828500006
出版者
EI入藏号
20170803382539
EI主题词
Convex Optimization ; Gradient Methods ; Image Reconstruction ; Parallel Processing Systems ; Variational Techniques
EI分类号
Digital Computers And Systems:722.4 ; Calculus:921.2 ; Numerical Methods:921.6
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:28
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/28909
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
2.South Univ Sci & Technol China, Dept Math, Shenzhen, Peoples R China
3.High Tech Inst Xian, Xian 710025, Shaanxi, Peoples R China
4.Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
第一作者单位数学系
推荐引用方式
GB/T 7714
He, Bingsheng,Ma, Feng,Yuan, Xiaoming. An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems[J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION,2017,58(2):279-293.
APA
He, Bingsheng,Ma, Feng,&Yuan, Xiaoming.(2017).An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems.JOURNAL OF MATHEMATICAL IMAGING AND VISION,58(2),279-293.
MLA
He, Bingsheng,et al."An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems".JOURNAL OF MATHEMATICAL IMAGING AND VISION 58.2(2017):279-293.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
He2017_Article_AnAlg(1146KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He, Bingsheng]的文章
[Ma, Feng]的文章
[Yuan, Xiaoming]的文章
百度学术
百度学术中相似的文章
[He, Bingsheng]的文章
[Ma, Feng]的文章
[Yuan, Xiaoming]的文章
必应学术
必应学术中相似的文章
[He, Bingsheng]的文章
[Ma, Feng]的文章
[Yuan, Xiaoming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。