中文版 | English
题名

Uncovering Flooding Mechanisms Across the Contiguous United States Through Interpretive Deep Learning on Representative Catchments

作者
通讯作者Zheng, Yi; Babovic, Vladan
发表日期
2022
DOI
发表期刊
ISSN
0043-1397
EISSN
1944-7973
卷号58期号:1
摘要
Long short-term memory (LSTM) networks represent one of the most prevalent deep learning (DL) architectures in current hydrological modeling, but they remain black boxes from which process understanding can hardly be obtained. This study aims to demonstrate the potential of interpretive DL in gaining scientific insights using flood prediction across the contiguous United States (CONUS) as a case study. Two interpretation methods were adopted to decipher the machine-captured patterns and inner workings of LSTM networks. The DL interpretation by the expected gradients method revealed three distinct input-output relationships learned by LSTM-based runoff models in 160 individual catchments. These relationships correspond to three flood-inducing mechanisms-snowmelt, recent rainfall, and historical rainfall-that account for 10.1%, 60.9%, and 29.0% of the 20,908 flow peaks identified from the data set, respectively. Single flooding mechanisms dominate 70.7% of the investigated catchments (11.9% snowmelt-dominated, 34.4% recent rainfall-dominated, and 24.4% historical rainfall-dominated mechanisms), and the remaining 29.3% have mixed mechanisms. The spatial variability in the dominant mechanisms reflects the catchments' geographic and climatic conditions. Moreover, the additive decomposition method unveils how the LSTM network behaves differently in retaining and discarding information when emulating different types of floods. Information from inputs within previous time steps can be partially stored in the memory of LSTM networks to predict snowmelt-induced and historical rainfall-induced floods, while for recent rainfall-induced floods, only recent information is retained. Overall, this study provides a new perspective for understanding hydrological processes and extremes and demonstrates the prospect of artificial intelligence-assisted scientific discovery in the future.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
重要成果
ESI高被引
学校署名
通讯
资助项目
National Natural Science Foundation of China[51961125203,92047302] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA20100104]
WOS研究方向
Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
WOS类目
Environmental Sciences ; Limnology ; Water Resources
WOS记录号
WOS:000751310200019
出版者
EI入藏号
20220511563028
EI主题词
Catchments ; Floods ; Rain ; Runoff ; Snow melting systems
EI分类号
Flood Control:442.1 ; Precipitation:443.3 ; Surface Water:444.1
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:83
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/291009
专题工学院_环境科学与工程学院
作者单位
1.Natl Univ Singapore, Dept Civil & Environm Engn, Singapore, Singapore
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen Municipal Engn Lab Environm IoT Technol, Shenzhen, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院;  南方科技大学
推荐引用方式
GB/T 7714
Jiang, Shijie,Zheng, Yi,Wang, Chao,et al. Uncovering Flooding Mechanisms Across the Contiguous United States Through Interpretive Deep Learning on Representative Catchments[J]. WATER RESOURCES RESEARCH,2022,58(1).
APA
Jiang, Shijie,Zheng, Yi,Wang, Chao,&Babovic, Vladan.(2022).Uncovering Flooding Mechanisms Across the Contiguous United States Through Interpretive Deep Learning on Representative Catchments.WATER RESOURCES RESEARCH,58(1).
MLA
Jiang, Shijie,et al."Uncovering Flooding Mechanisms Across the Contiguous United States Through Interpretive Deep Learning on Representative Catchments".WATER RESOURCES RESEARCH 58.1(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang, Shijie]的文章
[Zheng, Yi]的文章
[Wang, Chao]的文章
百度学术
百度学术中相似的文章
[Jiang, Shijie]的文章
[Zheng, Yi]的文章
[Wang, Chao]的文章
必应学术
必应学术中相似的文章
[Jiang, Shijie]的文章
[Zheng, Yi]的文章
[Wang, Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。