题名 | Massive interstitial solid solution alloys achieve near-theoretical strength |
作者 | Liu,Chang1; Lu,Wenjun2 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
通讯作者 | Wu,Ge; Li,Zhiming; Raabe,Dierk; Li,Zhiming; Raabe,Dierk |
发表日期 | 2022-12-01
|
DOI | |
发表期刊 | |
EISSN | 2041-1723
|
卷号 | 13期号:1 |
摘要 | Interstitials, e.g., C, N, and O, are attractive alloying elements as small atoms on interstitial sites create strong lattice distortions and hence substantially strengthen metals. However, brittle ceramics such as oxides and carbides usually form, instead of solid solutions, when the interstitial content exceeds a critical yet low value (e.g., 2 at.%). Here we introduce a class of massive interstitial solid solution (MISS) alloys by using a highly distorted substitutional host lattice, which enables solution of massive amounts of interstitials as an additional principal element class, without forming ceramic phases. For a TiNbZr-O-C-N MISS model system, the content of interstitial O reaches 12 at.%, with no oxides formed. The alloy reveals an ultrahigh compressive yield strength of 4.2 GPa, approaching the theoretical limit, and large deformability (65% strain) at ambient temperature, without localized shear deformation. The MISS concept thus offers a new avenue in the development of metallic materials with excellent mechanical properties. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI期刊
|
学校署名 | 其他
|
资助项目 | Deutsche Forschungsgemeinschaft (German Research Foundation)[SPP 2006]
; National Science Foundation of China[51971248]
|
WOS研究方向 | Science & Technology - Other Topics
|
WOS类目 | Multidisciplinary Sciences
|
WOS记录号 | WOS:000771136200007
|
出版者 | |
Scopus记录号 | 2-s2.0-85125587231
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:50
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/292357 |
专题 | 工学院_机械与能源工程系 工学院_材料科学与工程系 |
作者单位 | 1.Max-Planck-Institut für Eisenforschung,Düsseldorf,Max-Planck-Straße 1,40237,Germany 2.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,China 3.School of Metallurgical Engineering,Anhui University of Technology,Maanshan,243000,China 4.Microstructure and Properties of Materials (IEK-2),Forschungszentrum Jülich,Jülich,52425,Germany 5.Department of Mechanical Engineering,City University of Hong Kong,Hong Kong 6.Department of Materials,Royal School of Mine,Imperial College London,London,SW7 2AZ,United Kingdom 7.Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) and Hysitron Applied Research Center in China (HARCC),State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an,710049,China 8.School of Materials Science and Engineering,Central South University,Changsha,410083,China 9.Key Laboratory of Nonferrous Metal Materials Science and Engineering,Ministry of Education,Central South University,Changsha,410083,China 10.Max-Planck-Institut für Eisenforschung,Düsseldorf,Max-Planck-Straße 1,40237,Germany 11.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,China 12.School of Metallurgical Engineering,Anhui University of Technology,Maanshan,243000,China 13.Microstructure and Properties of Materials (IEK-2),Forschungszentrum Jülich,Jülich,52425,Germany 14.Department of Mechanical Engineering,City University of Hong Kong,Hong Kong 15.Department of Materials,Royal School of Mine,Imperial College London,London,SW7 2AZ,United Kingdom 16.Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) and Hysitron Applied Research Center in China (HARCC),State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an,710049,China 17.School of Materials Science and Engineering,Central South University,Changsha,410083,China 18.Key Laboratory of Nonferrous Metal Materials Science and Engineering,Ministry of Education,Central South University,Changsha,410083,China |
推荐引用方式 GB/T 7714 |
Liu,Chang,Lu,Wenjun,Xia,Wenzhen,et al. Massive interstitial solid solution alloys achieve near-theoretical strength[J]. Nature Communications,2022,13(1).
|
APA |
Liu,Chang.,Lu,Wenjun.,Xia,Wenzhen.,Du,Chaowei.,Rao,Ziyuan.,...&Raabe,Dierk.(2022).Massive interstitial solid solution alloys achieve near-theoretical strength.Nature Communications,13(1).
|
MLA |
Liu,Chang,et al."Massive interstitial solid solution alloys achieve near-theoretical strength".Nature Communications 13.1(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论