中文版 | English
题名

Stability and asymptotic behavior of transonic flows past wedges for the full Euler equations

作者
通讯作者Chen, Gui-Qiang G.
发表日期
2017
DOI
发表期刊
ISSN
1463-9963
EISSN
1463-9971
卷号19期号:4页码:591-626
摘要

The existence, uniqueness, and asymptotic behavior of steady transonic flows past a curved wedge, involving transonic shocks, governed by the two-dimensional full Euler equations are established. The stability of both weak and strong transonic shocks under the perturbation of the upstream supersonic flow and the wedge boundary is proved. The problem is formulated as a one-phase free boundary problem, in which the transonic shock is treated as a free boundary. The full Euler equations are decomposed into two algebraic equations and a first-order elliptic system of two equations in Lagrangian coordinates. With careful elliptic estimates by using appropriate weighted Holder norms, the iteration map is defined and analyzed, and the existence of its fixed point is established by performing the Schauder fixed point argument. The careful analysis of the asymptotic behavior of the solutions reveals particular characters of the full Euler equations.;The existence, uniqueness, and asymptotic behavior of steady transonic flows past a curved wedge, involving transonic shocks, governed by the two-dimensional full Euler equations are established. The stability of both weak and strong transonic shocks under the perturbation of the upstream supersonic flow and the wedge boundary is proved. The problem is formulated as a one-phase free boundary problem, in which the transonic shock is treated as a free boundary. The full Euler equations are decomposed into two algebraic equations and a first-order elliptic system of two equations in Lagrangian coordinates. With careful elliptic estimates by using appropriate weighted Holder norms, the iteration map is defined and analyzed, and the existence of its fixed point is established by performing the Schauder fixed point argument. The careful analysis of the asymptotic behavior of the solutions reveals particular characters of the full Euler equations.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Science Foundation[DMS-1401490]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied ; Mathematics
WOS记录号
WOS:000422714700005
出版者
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/29265
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Univ Oxford, Math Inst, Oxford OX2 6GG, England
2.Chinese Acad Sci, AMSS, Beijing 100190, Peoples R China
3.Chinese Acad Sci, UCAS, Beijing 100190, Peoples R China
4.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
5.Univ Wisconsin, Dept Math, Madison, WI 53706 USA
推荐引用方式
GB/T 7714
Chen, Gui-Qiang G.,Chen, Jun,Feldman, Mikhail. Stability and asymptotic behavior of transonic flows past wedges for the full Euler equations[J]. INTERFACES AND FREE BOUNDARIES,2017,19(4):591-626.
APA
Chen, Gui-Qiang G.,Chen, Jun,&Feldman, Mikhail.(2017).Stability and asymptotic behavior of transonic flows past wedges for the full Euler equations.INTERFACES AND FREE BOUNDARIES,19(4),591-626.
MLA
Chen, Gui-Qiang G.,et al."Stability and asymptotic behavior of transonic flows past wedges for the full Euler equations".INTERFACES AND FREE BOUNDARIES 19.4(2017):591-626.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
IFB-2017-019-004-05.(413KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Gui-Qiang G.]的文章
[Chen, Jun]的文章
[Feldman, Mikhail]的文章
百度学术
百度学术中相似的文章
[Chen, Gui-Qiang G.]的文章
[Chen, Jun]的文章
[Feldman, Mikhail]的文章
必应学术
必应学术中相似的文章
[Chen, Gui-Qiang G.]的文章
[Chen, Jun]的文章
[Feldman, Mikhail]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。