题名 | Sparse Bayesian variable selection in multinomial probit regression model with application to high-dimensional data classification |
作者 | |
通讯作者 | Jiang Xuejun |
发表日期 | 2017
|
DOI | |
发表期刊 | |
ISSN | 0361-0926
|
EISSN | 1532-415X
|
卷号 | 46期号:12页码:6137-6150 |
摘要 | Here we consider a multinomial probit regression model where the number of variables substantially exceeds the sample size and only a subset of the available variables is associated with the response. Thus selecting a small number of relevant variables for classification has received a great deal of attention. Generally when the number of variables is substantial, sparsity-enforcing priors for the regression coefficients are called for on grounds of predictive generalization and computational ease. In this paper, we propose a sparse Bayesian variable selection method in multinomial probit regression model for multi-class classification. The performance of our proposed method is demonstrated with one simulated data and three well-known gene expression profiling data: breast cancer data, leukemia data, and small round blue-cell tumors. The results show that compared with other methods, our method is able to select the relevant variables and can obtain competitive classification accuracy with a small subset of relevant genes. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Natural Science Foundation of Jiangsu[BK20141326]
|
WOS研究方向 | Mathematics
|
WOS类目 | Statistics & Probability
|
WOS记录号 | WOS:000395580600031
|
出版者 | |
EI入藏号 | 20171103434334
|
EI主题词 | Clustering Algorithms
; Diseases
; Gene Expression
; Regression Analysis
; Stochastic Models
; Stochastic Systems
|
EI分类号 | Biology:461.9
; Information Sources And Analysis:903.1
; Probability Theory:922.1
; Mathematical Statistics:922.2
; Systems Science:961
|
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/29278 |
专题 | 理学院_数学系 工学院_材料科学与工程系 |
作者单位 | 1.Nanjing Forestry Univ, Coll Econ & Management, Nanjing, Jiangsu, Peoples R China 2.Southeast Univ, Sch Econ & Management, Nanjing, Jiangsu, Peoples R China 3.South Univ Sci & Technol China, Dept Math, Shenzhen, Peoples R China 4.Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore 5.Southeast Univ, Dept Math, Nanjing, Jiangsu, Peoples R China |
通讯作者单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Yang Aijun,Jiang Xuejun,Xiang Liming,et al. Sparse Bayesian variable selection in multinomial probit regression model with application to high-dimensional data classification[J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS,2017,46(12):6137-6150.
|
APA |
Yang Aijun,Jiang Xuejun,Xiang Liming,&Lin Jinguan.(2017).Sparse Bayesian variable selection in multinomial probit regression model with application to high-dimensional data classification.COMMUNICATIONS IN STATISTICS-THEORY AND METHODS,46(12),6137-6150.
|
MLA |
Yang Aijun,et al."Sparse Bayesian variable selection in multinomial probit regression model with application to high-dimensional data classification".COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 46.12(2017):6137-6150.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Sparse Bayesian vari(666KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论