中文版 | English
题名

Sparse Bayesian variable selection in multinomial probit regression model with application to high-dimensional data classification

作者
通讯作者Jiang Xuejun
发表日期
2017
DOI
发表期刊
ISSN
0361-0926
EISSN
1532-415X
卷号46期号:12页码:6137-6150
摘要

Here we consider a multinomial probit regression model where the number of variables substantially exceeds the sample size and only a subset of the available variables is associated with the response. Thus selecting a small number of relevant variables for classification has received a great deal of attention. Generally when the number of variables is substantial, sparsity-enforcing priors for the regression coefficients are called for on grounds of predictive generalization and computational ease. In this paper, we propose a sparse Bayesian variable selection method in multinomial probit regression model for multi-class classification. The performance of our proposed method is demonstrated with one simulated data and three well-known gene expression profiling data: breast cancer data, leukemia data, and small round blue-cell tumors. The results show that compared with other methods, our method is able to select the relevant variables and can obtain competitive classification accuracy with a small subset of relevant genes.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Natural Science Foundation of Jiangsu[BK20141326]
WOS研究方向
Mathematics
WOS类目
Statistics & Probability
WOS记录号
WOS:000395580600031
出版者
EI入藏号
20171103434334
EI主题词
Clustering Algorithms ; Diseases ; Gene Expression ; Regression Analysis ; Stochastic Models ; Stochastic Systems
EI分类号
Biology:461.9 ; Information Sources And Analysis:903.1 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 ; Systems Science:961
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/29278
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Nanjing Forestry Univ, Coll Econ & Management, Nanjing, Jiangsu, Peoples R China
2.Southeast Univ, Sch Econ & Management, Nanjing, Jiangsu, Peoples R China
3.South Univ Sci & Technol China, Dept Math, Shenzhen, Peoples R China
4.Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
5.Southeast Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
通讯作者单位数学系
推荐引用方式
GB/T 7714
Yang Aijun,Jiang Xuejun,Xiang Liming,et al. Sparse Bayesian variable selection in multinomial probit regression model with application to high-dimensional data classification[J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS,2017,46(12):6137-6150.
APA
Yang Aijun,Jiang Xuejun,Xiang Liming,&Lin Jinguan.(2017).Sparse Bayesian variable selection in multinomial probit regression model with application to high-dimensional data classification.COMMUNICATIONS IN STATISTICS-THEORY AND METHODS,46(12),6137-6150.
MLA
Yang Aijun,et al."Sparse Bayesian variable selection in multinomial probit regression model with application to high-dimensional data classification".COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 46.12(2017):6137-6150.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Sparse Bayesian vari(666KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang Aijun]的文章
[Jiang Xuejun]的文章
[Xiang Liming]的文章
百度学术
百度学术中相似的文章
[Yang Aijun]的文章
[Jiang Xuejun]的文章
[Xiang Liming]的文章
必应学术
必应学术中相似的文章
[Yang Aijun]的文章
[Jiang Xuejun]的文章
[Xiang Liming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。