题名 | Computing Roman domatic number of graphs |
作者 | |
通讯作者 | Wang, Rui |
发表日期 | 2016-09
|
DOI | |
发表期刊 | |
ISSN | 0020-0190
|
EISSN | 1872-6119
|
卷号 | 116期号:9页码:554-559 |
摘要 | A Roman dominating function on a graph G = (V, E) is a mapping: V -> {0, 1, 2} satisfying that every vertex v is an element of V with f(v) = 0 is adjacent to some vertex u is an element of V with f(u) = 2. A Roman dominating family (of functions) on G is a set {f(1), f(2), ..., f(d)} of Roman dominating functions on G with the property that Sigma(d)(i=1) f(i)(v) <= 2 for all v is an element of V. The Roman domatic number of G, introduced by Sheikholeslami and Volkmann in 2010 [1], is the maximum number of functions in a Roman dominating family on G. In this paper, we study the Roman domatic number from both algorithmic complexity and graph theory points of view. We show that it is NP-complete to decide whether the Roman domatic number is at least 3, even if the graph is bipartite. To the best of our knowledge, this is the first computational hardness result concerning this concept. We also present an asymptotically optimal approximation threshold of Theta(logn) for computing the Roman domatic number of a graph. Moreover, we determine the Roman domatic number of some particular classes of graphs, such as fans, wheels and complete bipartite graphs. (C) 2016 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Sci., Tech. and Innovation Commission of Shenzhen Municipality Grant[KQCX2014052215132295]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
|
WOS记录号 | WOS:000377736400003
|
出版者 | |
EI入藏号 | 20161902368470
|
EI主题词 | Approximation algorithms
; Computational complexity
; Parallel processing systems
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Digital Computers and Systems:722.4
; Mathematics:921
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/29477 |
专题 | 南方科技大学 |
作者单位 | 1.Jinan Univ, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China 2.Facebook Inc, 7006 126th Ave NE, Kirkland, WA 98033 USA 3.South Univ Sci & Technol China, Shenzhen, Peoples R China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Tan, Haisheng,Liang, Hongyu,Wang, Rui,et al. Computing Roman domatic number of graphs[J]. INFORMATION PROCESSING LETTERS,2016,116(9):554-559.
|
APA |
Tan, Haisheng,Liang, Hongyu,Wang, Rui,&Zhou, Jipeng.(2016).Computing Roman domatic number of graphs.INFORMATION PROCESSING LETTERS,116(9),554-559.
|
MLA |
Tan, Haisheng,et al."Computing Roman domatic number of graphs".INFORMATION PROCESSING LETTERS 116.9(2016):554-559.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Tan-2016-Computing R(341KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论