中文版 | English
题名

Computing Roman domatic number of graphs

作者
通讯作者Wang, Rui
发表日期
2016-09
DOI
发表期刊
ISSN
0020-0190
EISSN
1872-6119
卷号116期号:9页码:554-559
摘要
A Roman dominating function on a graph G = (V, E) is a mapping: V -> {0, 1, 2} satisfying that every vertex v is an element of V with f(v) = 0 is adjacent to some vertex u is an element of V with f(u) = 2. A Roman dominating family (of functions) on G is a set {f(1), f(2), ..., f(d)} of Roman dominating functions on G with the property that Sigma(d)(i=1) f(i)(v) <= 2 for all v is an element of V. The Roman domatic number of G, introduced by Sheikholeslami and Volkmann in 2010 [1], is the maximum number of functions in a Roman dominating family on G. In this paper, we study the Roman domatic number from both algorithmic complexity and graph theory points of view. We show that it is NP-complete to decide whether the Roman domatic number is at least 3, even if the graph is bipartite. To the best of our knowledge, this is the first computational hardness result concerning this concept. We also present an asymptotically optimal approximation threshold of Theta(logn) for computing the Roman domatic number of a graph. Moreover, we determine the Roman domatic number of some particular classes of graphs, such as fans, wheels and complete bipartite graphs. (C) 2016 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Sci., Tech. and Innovation Commission of Shenzhen Municipality Grant[KQCX2014052215132295]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000377736400003
出版者
EI入藏号
20161902368470
EI主题词
Approximation algorithms ; Computational complexity ; Parallel processing systems
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Digital Computers and Systems:722.4 ; Mathematics:921 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/29477
专题南方科技大学
作者单位
1.Jinan Univ, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China
2.Facebook Inc, 7006 126th Ave NE, Kirkland, WA 98033 USA
3.South Univ Sci & Technol China, Shenzhen, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Tan, Haisheng,Liang, Hongyu,Wang, Rui,et al. Computing Roman domatic number of graphs[J]. INFORMATION PROCESSING LETTERS,2016,116(9):554-559.
APA
Tan, Haisheng,Liang, Hongyu,Wang, Rui,&Zhou, Jipeng.(2016).Computing Roman domatic number of graphs.INFORMATION PROCESSING LETTERS,116(9),554-559.
MLA
Tan, Haisheng,et al."Computing Roman domatic number of graphs".INFORMATION PROCESSING LETTERS 116.9(2016):554-559.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Tan-2016-Computing R(341KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tan, Haisheng]的文章
[Liang, Hongyu]的文章
[Wang, Rui]的文章
百度学术
百度学术中相似的文章
[Tan, Haisheng]的文章
[Liang, Hongyu]的文章
[Wang, Rui]的文章
必应学术
必应学术中相似的文章
[Tan, Haisheng]的文章
[Liang, Hongyu]的文章
[Wang, Rui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。