中文版 | English
题名

TRANSONIC FLOWS WITH SHOCKS PAST CURVED WEDGES FOR THE FULL EULER EQUATIONS

作者
通讯作者Chen, Gui-Qiang
发表日期
2016-08
DOI
发表期刊
ISSN
1078-0947
EISSN
1553-5231
卷号36期号:8页码:4179-4211
摘要

We establish the existence, stability, and asymptotic behavior of transonic flows with a transonic shock past a curved wedge for the steady full Euler equations in an important physical regime, which form a nonlinear system of mixed-composite hyperbolic-elliptic type. To achieve this, we first employ the transformation from Eulerian to Lagrangian coordinates and then exploit one of the new equations to identify a potential function in Lagrangian coordinates. By capturing the conservation properties of the system, we derive a single second-order nonlinear elliptic equation for the potential function in the subsonic region so that the transonic shock problem is reformulated as a one-phase free boundary problem for the nonlinear equation with the shock-front as a free boundary. One of the advantages of this approach is that, given the shock location or equivalently the entropy function along the shock-front downstream, all the physical variables can be expressed as functions of the gradient of the potential function, and the downstream asymptotic behavior of the potential function at infinity can be uniquely determined with a uniform decay rate. To solve the free boundary problem, we employ the hodograph transformation to transfer the free boundary to a fixed boundary, while keeping the ellipticity of the nonlinear equation, and then update the entropy function to prove that the updating map has a fixed point. Another advantage in our analysis is in the context of the full Euler equations so that the Bernoulli constant is allowed to change for different fluid trajectories.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Science Foundation[DMS-1101260] ; National Science Foundation[DMS-1401490]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied ; Mathematics
WOS记录号
WOS:000372000300005
出版者
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/29545
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
3.Univ Wisconsin, Dept Math, Madison, WI 53706 USA
推荐引用方式
GB/T 7714
Chen, Gui-Qiang,Chen, Jun,Feldman, Mikhail. TRANSONIC FLOWS WITH SHOCKS PAST CURVED WEDGES FOR THE FULL EULER EQUATIONS[J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS,2016,36(8):4179-4211.
APA
Chen, Gui-Qiang,Chen, Jun,&Feldman, Mikhail.(2016).TRANSONIC FLOWS WITH SHOCKS PAST CURVED WEDGES FOR THE FULL EULER EQUATIONS.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS,36(8),4179-4211.
MLA
Chen, Gui-Qiang,et al."TRANSONIC FLOWS WITH SHOCKS PAST CURVED WEDGES FOR THE FULL EULER EQUATIONS".DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 36.8(2016):4179-4211.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
1078-0947_2016_8_417(563KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Gui-Qiang]的文章
[Chen, Jun]的文章
[Feldman, Mikhail]的文章
百度学术
百度学术中相似的文章
[Chen, Gui-Qiang]的文章
[Chen, Jun]的文章
[Feldman, Mikhail]的文章
必应学术
必应学术中相似的文章
[Chen, Gui-Qiang]的文章
[Chen, Jun]的文章
[Feldman, Mikhail]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。