中文版 | English
题名

The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting

作者
通讯作者Song, Xuan; Tsang, Ivor W.
发表日期
2021-12-01
DOI
发表期刊
ISSN
1556-4681
EISSN
1556-472X
卷号15期号:6
摘要
Transportation demand forecasting is a topic of large practical value. However, the model that fits the demand of one transportation by only considering the historical data of its own could be vulnerable since random fluctuations could easily impact the modeling. On the other hand, common factors like time and region attribute, drive the evolution demand of different transportation, leading to a co-evolving intrinsic property between different kinds of transportation. In this work, we focus on exploring the co-evolution between different modes of transport, e.g., taxi demand and shared-bike demand. Two significant challenges impede the discovery of the co-evolving pattern: (1) diversity of the co-evolving correlation, which varies from region to region and time to time. (2) Multi-modal data fusion. Taxi demand and shared-bike demand are time-series data, which have different representations with the external factors. Moreover, the distribution of taxi demand and bike demand are not identical. To overcome these challenges, we propose a novel method, known as co-evolving spatial temporal neural network (CEST). CEST learns a multi-view demand representation for each mode of transport, extracts the co-evolving pattern, then predicts the demand for the target transportation based on multi-scale representation, which includes fine-scale demand information and coarse-scale pattern information. We conduct extensive experiments to validate the superiority of our model over the state-of-art models.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
ARC["DP180100106","DP200101328"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号
WOS:000766204500010
出版者
EI入藏号
20222012121821
EI主题词
Bicycles ; Data fusion ; Data mining ; Digital storage ; Modal analysis ; Taxicabs ; Urban transportation
EI分类号
Highway Transportation:432 ; Passenger Highway Transportation:432.2 ; Railroad Transportation:433 ; Automobiles:662.1 ; Data Storage, Equipment and Techniques:722.1 ; Data Processing and Image Processing:723.2 ; Mathematics:921
来源库
Web of Science
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/296916
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Xueyuan Ave, Shenzhen 518055, Guangdong, Peoples R China
2.Univ Technol Sydney, Sydney, NSW, Australia
3.Univ Calif Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095 USA
4.Univ Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
5.Univ Technol Sydney, Australian Artificial Intelligence Inst, 15 Broadway, Ultimo, NSW 2007, Australia
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Deng, Jinliang,Chen, Xiusi,Fan, Zipei,et al. The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting[J]. ACM Transactions on Knowledge Discovery from Data,2021,15(6).
APA
Deng, Jinliang,Chen, Xiusi,Fan, Zipei,Jiang, Renhe,Song, Xuan,&Tsang, Ivor W..(2021).The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting.ACM Transactions on Knowledge Discovery from Data,15(6).
MLA
Deng, Jinliang,et al."The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting".ACM Transactions on Knowledge Discovery from Data 15.6(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Deng, Jinliang]的文章
[Chen, Xiusi]的文章
[Fan, Zipei]的文章
百度学术
百度学术中相似的文章
[Deng, Jinliang]的文章
[Chen, Xiusi]的文章
[Fan, Zipei]的文章
必应学术
必应学术中相似的文章
[Deng, Jinliang]的文章
[Chen, Xiusi]的文章
[Fan, Zipei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。