题名 | The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting |
作者 | |
通讯作者 | Song, Xuan; Tsang, Ivor W. |
发表日期 | 2021-12-01
|
DOI | |
发表期刊 | |
ISSN | 1556-4681
|
EISSN | 1556-472X
|
卷号 | 15期号:6 |
摘要 | Transportation demand forecasting is a topic of large practical value. However, the model that fits the demand of one transportation by only considering the historical data of its own could be vulnerable since random fluctuations could easily impact the modeling. On the other hand, common factors like time and region attribute, drive the evolution demand of different transportation, leading to a co-evolving intrinsic property between different kinds of transportation. In this work, we focus on exploring the co-evolution between different modes of transport, e.g., taxi demand and shared-bike demand. Two significant challenges impede the discovery of the co-evolving pattern: (1) diversity of the co-evolving correlation, which varies from region to region and time to time. (2) Multi-modal data fusion. Taxi demand and shared-bike demand are time-series data, which have different representations with the external factors. Moreover, the distribution of taxi demand and bike demand are not identical. To overcome these challenges, we propose a novel method, known as co-evolving spatial temporal neural network (CEST). CEST learns a multi-view demand representation for each mode of transport, extracts the co-evolving pattern, then predicts the demand for the target transportation based on multi-scale representation, which includes fine-scale demand information and coarse-scale pattern information. We conduct extensive experiments to validate the superiority of our model over the state-of-art models. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | ARC["DP180100106","DP200101328"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
; Computer Science, Software Engineering
|
WOS记录号 | WOS:000766204500010
|
出版者 | |
EI入藏号 | 20222012121821
|
EI主题词 | Bicycles
; Data fusion
; Data mining
; Digital storage
; Modal analysis
; Taxicabs
; Urban transportation
|
EI分类号 | Highway Transportation:432
; Passenger Highway Transportation:432.2
; Railroad Transportation:433
; Automobiles:662.1
; Data Storage, Equipment and Techniques:722.1
; Data Processing and Image Processing:723.2
; Mathematics:921
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/296916 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Xueyuan Ave, Shenzhen 518055, Guangdong, Peoples R China 2.Univ Technol Sydney, Sydney, NSW, Australia 3.Univ Calif Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095 USA 4.Univ Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan 5.Univ Technol Sydney, Australian Artificial Intelligence Inst, 15 Broadway, Ultimo, NSW 2007, Australia |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Deng, Jinliang,Chen, Xiusi,Fan, Zipei,et al. The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting[J]. ACM Transactions on Knowledge Discovery from Data,2021,15(6).
|
APA |
Deng, Jinliang,Chen, Xiusi,Fan, Zipei,Jiang, Renhe,Song, Xuan,&Tsang, Ivor W..(2021).The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting.ACM Transactions on Knowledge Discovery from Data,15(6).
|
MLA |
Deng, Jinliang,et al."The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting".ACM Transactions on Knowledge Discovery from Data 15.6(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论