中文版 | English
题名

Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for Autonomous Driving

作者
通讯作者Hao, Qi
DOI
发表日期
2021
会议名称
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN
2153-0858
ISBN
978-1-6654-1715-0
会议录名称
页码
6983-6989
会议日期
SEP 27-OCT 01, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Multi-object tracking (MOT) with camera-LiDAR fusion demands accurate results of object detection, affinity computation and data association in real time. This paper presents an efficient multi-modal MOT framework with online joint detection and tracking schemes and robust data association for autonomous driving applications. The novelty of this work includes: (1) development of an end-to-end deep neural network for joint object detection and correlation using 2D and 3D measurements; (2) development of a robust affinity computation module to compute occlusion-aware appearance and motion affinities in 3D space; (3) development of a comprehensive data association module for joint optimization among detection confidences, affinities and start-end probabilities. The experiment results on the KITTI tracking benchmark demonstrate the superior performance of the proposed method in terms of both tracking accuracy and processing speed.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Shenzhen Fundamental Research Program[JCYJ20200109141622964] ; Intel ICRI-IACV Research Fund[52514373]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000755125505086
EI入藏号
20220711623943
EI主题词
Benchmarking ; Cameras ; Deep neural networks ; Object detection ; Object recognition ; Optical radar
EI分类号
Highway Transportation:432 ; Ergonomics and Human Factors Engineering:461.4 ; Radar Systems and Equipment:716.2 ; Data Processing and Image Processing:723.2 ; Robot Applications:731.6 ; Optical Devices and Systems:741.3 ; Photographic Equipment:742.2
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9636311
引用统计
被引频次[WOS]:39
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/297719
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Sifakis Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
3.Pazhou Lab, Guangzhou 510330, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  南方科技大学
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Huang, Kemiao,Hao, Qi. Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for Autonomous Driving[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:6983-6989.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Kemiao]的文章
[Hao, Qi]的文章
百度学术
百度学术中相似的文章
[Huang, Kemiao]的文章
[Hao, Qi]的文章
必应学术
必应学术中相似的文章
[Huang, Kemiao]的文章
[Hao, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。