题名 | Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for Autonomous Driving |
作者 | |
通讯作者 | Hao, Qi |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
|
ISSN | 2153-0858
|
ISBN | 978-1-6654-1715-0
|
会议录名称 | |
页码 | 6983-6989
|
会议日期 | SEP 27-OCT 01, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Multi-object tracking (MOT) with camera-LiDAR fusion demands accurate results of object detection, affinity computation and data association in real time. This paper presents an efficient multi-modal MOT framework with online joint detection and tracking schemes and robust data association for autonomous driving applications. The novelty of this work includes: (1) development of an end-to-end deep neural network for joint object detection and correlation using 2D and 3D measurements; (2) development of a robust affinity computation module to compute occlusion-aware appearance and motion affinities in 3D space; (3) development of a comprehensive data association module for joint optimization among detection confidences, affinities and start-end probabilities. The experiment results on the KITTI tracking benchmark demonstrate the superior performance of the proposed method in terms of both tracking accuracy and processing speed. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Shenzhen Fundamental Research Program[JCYJ20200109141622964]
; Intel ICRI-IACV Research Fund[52514373]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000755125505086
|
EI入藏号 | 20220711623943
|
EI主题词 | Benchmarking
; Cameras
; Deep neural networks
; Object detection
; Object recognition
; Optical radar
|
EI分类号 | Highway Transportation:432
; Ergonomics and Human Factors Engineering:461.4
; Radar Systems and Equipment:716.2
; Data Processing and Image Processing:723.2
; Robot Applications:731.6
; Optical Devices and Systems:741.3
; Photographic Equipment:742.2
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9636311 |
引用统计 |
被引频次[WOS]:39
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/297719 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Sifakis Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China 3.Pazhou Lab, Guangzhou 510330, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 南方科技大学 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Huang, Kemiao,Hao, Qi. Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for Autonomous Driving[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:6983-6989.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论