中文版 | English
题名

Hybrid Graph Convolutional Networks for Skeleton-Based and EEG-Based Jumping Action Recognition

作者
通讯作者Hu, Fo
DOI
发表日期
2021
会议名称
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN
2153-0858
ISBN
978-1-6654-1715-0
会议录名称
页码
4156-4161
会议日期
SEP 27-OCT 01, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Kinematic information obtained directly from the skeletal model has been useful for jumping action recognition. Current research focuses on dynamic analysis based on the video stream. Although skeletal data can accurately capture the high-level information of human action, it ignores the brain's pre-execution command information, which plays a crucial role in identifying jumping action. Therefore, we proposed a hybrid model based on brain network and dynamic skeleton. Specifically, we used a brain network graph convolutional network (BNGCN) to encode brain command information. Also, a dynamic skeleton convolutional network (DSGCN) using the angular velocity of skeleton nodes instead of video is proposed, which can break the fixed experimental area's limitation. BNGCN and DSGCN are fused through three network nodes to construct an end-to-end Brain Network and Dynamic Skeleton Hybrid Model. Our contribution consists of three parts. First, we have created a data set that can be used for jumping action and its sub-phase recognition. Second, BNGCN is used to extract brain command information for jumping action recognition. Third, a hybrid model is proposed to incorporate brain command and skeleton kinematic information. The results show that our hybrid model can effectively capture the high-level features for jumping action recognition. The method outperforms compared methods for jumping action recognition.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000755125503039
EI入藏号
20220711623842
EI主题词
Convolutional neural networks ; Kinematics ; Musculoskeletal system
EI分类号
Biomechanics, Bionics and Biomimetics:461.3 ; Information Theory and Signal Processing:716.1 ; Mechanics:931.1
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9636110
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/297723
专题工学院_电子与电气工程系
作者单位
1.Northeastern Univ, Dept Mech Engn & Automat, Shenyang 110819, Peoples R China
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Feng, Naishi,Hu, Fo,Wang, Hong,et al. Hybrid Graph Convolutional Networks for Skeleton-Based and EEG-Based Jumping Action Recognition[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:4156-4161.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Feng, Naishi]的文章
[Hu, Fo]的文章
[Wang, Hong]的文章
百度学术
百度学术中相似的文章
[Feng, Naishi]的文章
[Hu, Fo]的文章
[Wang, Hong]的文章
必应学术
必应学术中相似的文章
[Feng, Naishi]的文章
[Hu, Fo]的文章
[Wang, Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。