中文版 | English
题名

Robust Feedback Motion Policy Design Using Reinforcement Learning on a 3D Digit Bipedal Robot

作者
通讯作者Castillo, Guillermo A.
DOI
发表日期
2021
会议名称
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN
2153-0858
ISBN
978-1-6654-1715-0
会议录名称
页码
5136-5143
会议日期
SEP 27-OCT 01, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In this paper, a hierarchical and robust framework for learning bipedal locomotion is presented and successfully implemented on the 3D biped robot Digit built by Agility Robotics. We propose a cascade-structure controller that combines the learning process with intuitive feedback regulations. This design allows the framework to realize robust and stable walking with a reduced-dimensional state and action spaces of the policy, significantly simplifying the design and increasing the sampling efficiency of the learning method. The inclusion of feedback regulation into the framework improves the robustness of the learned walking gait and ensures the success of the sim-to-real transfer of the proposed controller with minimal tuning. We specifically present a learning pipeline that considers hardware-feasible initial poses of the robot within the learning process to ensure the initial state of the learning is replicated as close as possible to the initial state of the robot in hardware experiments. Finally, we demonstrate the feasibility of our method by successfully transferring the learned policy in simulation to the Digit robot hardware, realizing sustained walking gaits under external force disturbances and challenging terrains not incurred during the training process. To the best of our knowledge, this is the first time a learning-based policy is transferred successfully to the Digit robot in hardware experiments.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[62073159]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000755125504013
EI入藏号
20220711623748
EI主题词
Biped locomotion ; Machine design ; Process control ; Reinforcement learning ; Robotics
EI分类号
Biomechanics, Bionics and Biomimetics:461.3 ; Mechanical Design:601 ; Artificial Intelligence:723.4 ; Control Systems:731.1 ; Robotics:731.5
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9636467
引用统计
被引频次[WOS]:25
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/297728
专题南方科技大学
工学院_机械与能源工程系
作者单位
1.Ohio State Univ, Elect & Comp Engn, Columbus, OH 43210 USA
2.Southern Univ Sci & Technol SUSTech, SUSTech Inst Robot, Shenzhen, Peoples R China
3.Ohio State Univ, Mech & Aerosp Engn, Columbus, OH 43210 USA
推荐引用方式
GB/T 7714
Castillo, Guillermo A.,Weng, Bowen,Zhang, Wei,et al. Robust Feedback Motion Policy Design Using Reinforcement Learning on a 3D Digit Bipedal Robot[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:5136-5143.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Castillo, Guillermo A.]的文章
[Weng, Bowen]的文章
[Zhang, Wei]的文章
百度学术
百度学术中相似的文章
[Castillo, Guillermo A.]的文章
[Weng, Bowen]的文章
[Zhang, Wei]的文章
必应学术
必应学术中相似的文章
[Castillo, Guillermo A.]的文章
[Weng, Bowen]的文章
[Zhang, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。