题名 | Robust Feedback Motion Policy Design Using Reinforcement Learning on a 3D Digit Bipedal Robot |
作者 | |
通讯作者 | Castillo, Guillermo A. |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
|
ISSN | 2153-0858
|
ISBN | 978-1-6654-1715-0
|
会议录名称 | |
页码 | 5136-5143
|
会议日期 | SEP 27-OCT 01, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this paper, a hierarchical and robust framework for learning bipedal locomotion is presented and successfully implemented on the 3D biped robot Digit built by Agility Robotics. We propose a cascade-structure controller that combines the learning process with intuitive feedback regulations. This design allows the framework to realize robust and stable walking with a reduced-dimensional state and action spaces of the policy, significantly simplifying the design and increasing the sampling efficiency of the learning method. The inclusion of feedback regulation into the framework improves the robustness of the learned walking gait and ensures the success of the sim-to-real transfer of the proposed controller with minimal tuning. We specifically present a learning pipeline that considers hardware-feasible initial poses of the robot within the learning process to ensure the initial state of the learning is replicated as close as possible to the initial state of the robot in hardware experiments. Finally, we demonstrate the feasibility of our method by successfully transferring the learned policy in simulation to the Digit robot hardware, realizing sustained walking gaits under external force disturbances and challenging terrains not incurred during the training process. To the best of our knowledge, this is the first time a learning-based policy is transferred successfully to the Digit robot in hardware experiments. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62073159]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000755125504013
|
EI入藏号 | 20220711623748
|
EI主题词 | Biped locomotion
; Machine design
; Process control
; Reinforcement learning
; Robotics
|
EI分类号 | Biomechanics, Bionics and Biomimetics:461.3
; Mechanical Design:601
; Artificial Intelligence:723.4
; Control Systems:731.1
; Robotics:731.5
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9636467 |
引用统计 |
被引频次[WOS]:25
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/297728 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | 1.Ohio State Univ, Elect & Comp Engn, Columbus, OH 43210 USA 2.Southern Univ Sci & Technol SUSTech, SUSTech Inst Robot, Shenzhen, Peoples R China 3.Ohio State Univ, Mech & Aerosp Engn, Columbus, OH 43210 USA |
推荐引用方式 GB/T 7714 |
Castillo, Guillermo A.,Weng, Bowen,Zhang, Wei,et al. Robust Feedback Motion Policy Design Using Reinforcement Learning on a 3D Digit Bipedal Robot[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:5136-5143.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论