题名 | Grasp Pose Detection from a Single RGB Image |
作者 | |
通讯作者 | Meng, Max Q-H |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
|
ISSN | 2153-0858
|
ISBN | 978-1-6654-1715-0
|
会议录名称 | |
页码 | 4686-4691
|
会议日期 | SEP 27-OCT 01, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Grasp pose detection generates the position and orientation of the robot end-effector to grasp objects from the RGB or RGB-D image. In this paper, we propose a novel grasp pose detection network that generates 3-DOF grasp poses using the RGB image. The network follows the anchor-based object detection pipeline and incorporates the angle detection unit. Furthermore, we redesign the grasp angle predictor with a classification unit to increase the accuracy of grasp pose rotation estimation. Our method classifies the prediction angle densely in contrast with the previous regression method or sparse classification method. Moreover, an angle smooth label is designed to avoid the sudden change of the angle regression loss caused by the periodic property of the angle. We validate our algorithm on Cornell Grasp Dataset and obtain a higher detection accuracy than the state-of-the-art method. The real scenario experiment also proves the effectiveness of our method. The robot equipped with the parallel gripper achieves a 96:4% grasp success rate. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Shenzhen Key Laboratory of Robotics Perception and Intelligence[ZDSYS-20200810171800001]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000755125503105
|
EI入藏号 | 20220711624141
|
EI主题词 | End effectors
; Gesture recognition
; Intelligent robots
; Object detection
; Robotics
|
EI分类号 | Data Processing and Image Processing:723.2
; Robotics:731.5
; Robot Applications:731.6
; Mathematical Statistics:922.2
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9636511 |
引用统计 |
被引频次[WOS]:5
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/297753 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Chinese Univ Hong Kong, Dept Elect Engn, Robot Percept & Artificial Intelligence Lab, Hong Kong, Peoples R China 2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China 3.Chinese Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China |
通讯作者单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Cheng, Hu,Wang, Yingying,Meng, Max Q-H. Grasp Pose Detection from a Single RGB Image[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:4686-4691.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论