中文版 | English
题名

Grasp Pose Detection from a Single RGB Image

作者
通讯作者Meng, Max Q-H
DOI
发表日期
2021
会议名称
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN
2153-0858
ISBN
978-1-6654-1715-0
会议录名称
页码
4686-4691
会议日期
SEP 27-OCT 01, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Grasp pose detection generates the position and orientation of the robot end-effector to grasp objects from the RGB or RGB-D image. In this paper, we propose a novel grasp pose detection network that generates 3-DOF grasp poses using the RGB image. The network follows the anchor-based object detection pipeline and incorporates the angle detection unit. Furthermore, we redesign the grasp angle predictor with a classification unit to increase the accuracy of grasp pose rotation estimation. Our method classifies the prediction angle densely in contrast with the previous regression method or sparse classification method. Moreover, an angle smooth label is designed to avoid the sudden change of the angle regression loss caused by the periodic property of the angle. We validate our algorithm on Cornell Grasp Dataset and obtain a higher detection accuracy than the state-of-the-art method. The real scenario experiment also proves the effectiveness of our method. The robot equipped with the parallel gripper achieves a 96:4% grasp success rate.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Shenzhen Key Laboratory of Robotics Perception and Intelligence[ZDSYS-20200810171800001]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000755125503105
EI入藏号
20220711624141
EI主题词
End effectors ; Gesture recognition ; Intelligent robots ; Object detection ; Robotics
EI分类号
Data Processing and Image Processing:723.2 ; Robotics:731.5 ; Robot Applications:731.6 ; Mathematical Statistics:922.2
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9636511
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/297753
专题工学院_电子与电气工程系
作者单位
1.Chinese Univ Hong Kong, Dept Elect Engn, Robot Percept & Artificial Intelligence Lab, Hong Kong, Peoples R China
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
3.Chinese Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Cheng, Hu,Wang, Yingying,Meng, Max Q-H. Grasp Pose Detection from a Single RGB Image[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:4686-4691.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng, Hu]的文章
[Wang, Yingying]的文章
[Meng, Max Q-H]的文章
百度学术
百度学术中相似的文章
[Cheng, Hu]的文章
[Wang, Yingying]的文章
[Meng, Max Q-H]的文章
必应学术
必应学术中相似的文章
[Cheng, Hu]的文章
[Wang, Yingying]的文章
[Meng, Max Q-H]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。