中文版 | English
题名

Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors

作者
通讯作者Zhu, Bao-Ting
发表日期
2016-01
DOI
发表期刊
ISSN
0039-128X
EISSN
1878-5867
卷号105页码:26-41
摘要

Estrogens have a whole host of physiological functions in many human organs and systems, including the reproductive, cardiovascular, and central nervous systems. Many naturally-occurring compounds with estrogenic or antiestrogenic activity are present in our environment and food sources. Synthetic estrogens and antiestrogens are also important therapeutic agents. At the molecular level, estrogen receptors (ERs) mediate most of the well-known actions of estrogens. Given recent advances in computational modeling tools, it is now highly practical to use these tools to study the interaction of human ERs with various types of ligands. There are two common categories of modeling techniques: one is the quantitative structure activity relationship (QSAR) analysis, which uses the structural information of the interacting ligands to predict the binding site properties of a macromolecule, and the other one is molecular docking-based computational analysis, which uses the 3-dimensional structural information of both the ligands and the receptor to predict the binding interaction. In this review, we discuss recent results that employed these and other related computational modeling approaches to characterize the binding interaction of various estrogens and antiestrogens with the human ERs. These examples clearly demonstrate that the computational modeling approaches, when used in combination with other experimental methods, are powerful tools that can precisely predict the binding interaction of various estrogenic ligands and their derivatives with the human ERs. (C) 2015 Elsevier Inc. All rights reserved.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Biochemistry & Molecular Biology ; Endocrinology & Metabolism
WOS类目
Biochemistry & Molecular Biology ; Endocrinology & Metabolism
WOS记录号
WOS:000368219900004
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/29839
专题理学院_化学系
生命科学学院_生物系
作者单位
1.Univ Kansas, Med Ctr, Sch Med, Dept Pharmacol Toxicol & Therapeut, Kansas City, KS 66160 USA
2.Chinese Acad Sci, Inst Zool, Being 100101, Peoples R China
3.South Univ Sci & Technol China, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
4.South Univ Sci & Technol China, Dept Biol, Shenzhen 518055, Guangdong, Peoples R China
通讯作者单位生物系
推荐引用方式
GB/T 7714
Wang, Pan,Dang, Li,Zhu, Bao-Ting. Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors[J]. STEROIDS,2016,105:26-41.
APA
Wang, Pan,Dang, Li,&Zhu, Bao-Ting.(2016).Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors.STEROIDS,105,26-41.
MLA
Wang, Pan,et al."Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors".STEROIDS 105(2016):26-41.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
1-s2.0-S0039128X1500(3311KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Pan]的文章
[Dang, Li]的文章
[Zhu, Bao-Ting]的文章
百度学术
百度学术中相似的文章
[Wang, Pan]的文章
[Dang, Li]的文章
[Zhu, Bao-Ting]的文章
必应学术
必应学术中相似的文章
[Wang, Pan]的文章
[Dang, Li]的文章
[Zhu, Bao-Ting]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。