题名 | The noise covariances of linear Gaussian systems with unknown inputs are not uniquely identifiable using autocovariance least-squares |
作者 | |
通讯作者 | Kong,He |
发表日期 | 2022-04-01
|
DOI | |
发表期刊 | |
ISSN | 0167-6911
|
EISSN | 1872-7956
|
卷号 | 162 |
摘要 | Existing works in optimal filtering for linear Gaussian systems with arbitrary unknown inputs assume perfect knowledge of the noise covariances in the filter design. This is impractical and raises the question of whether and under what conditions one can identify the noise covariances of linear Gaussian systems with arbitrary unknown inputs. This paper considers the above identifiability question using the correlation-based autocovariance least-squares (ALS) approach. In particular, for the ALS framework, we prove that (i) the process noise covariance Q and the measurement noise covariance R cannot be uniquely jointly identified; (ii) neither Q nor R is uniquely identifiable, when the other is known. This not only helps us to have a better understanding of the applicability of existing filtering frameworks under unknown inputs (since almost all of them require perfect knowledge of the noise covariances) but also calls for further investigation of alternative and more viable noise covariance methods under unknown inputs. Especially, it remains to be explored whether the noise covariances are uniquely identifiable using other correlation-based methods. We are also interested to use regularization for noise covariance estimation under unknown inputs, and investigate the relevant property guarantees for the covariance estimates. The above topics are the main subjects of our current and future work. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Chinese University of Hong Kong, Shenzhen[2014.0003.23]
; [PF. 01.000249]
|
WOS研究方向 | Automation & Control Systems
; Operations Research & Management Science
|
WOS类目 | Automation & Control Systems
; Operations Research & Management Science
|
WOS记录号 | WOS:000788749000008
|
出版者 | |
EI入藏号 | 20221011757255
|
EI主题词 | Correlation methods
; Gaussian distribution
|
EI分类号 | Probability Theory:922.1
; Mathematical Statistics:922.2
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85125697580
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/302171 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Australian Centre for Field Robotics,University of Sydney,NSW,2006,Australia 3.Independent researcher,Tucson,85756,United States 4.School of Data Science and Shenzhen Research Institute of Big Data,The Chinese University of Hong Kong,Shenzhen,518172,China 5.School of Computer,Data and Mathematical Sciences,Western Sydney University,Sydney,NSW 2751,Australia |
第一作者单位 | 机械与能源工程系 |
通讯作者单位 | 机械与能源工程系 |
第一作者的第一单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Kong,He,Sukkarieh,Salah,Arnold,Travis J.,et al. The noise covariances of linear Gaussian systems with unknown inputs are not uniquely identifiable using autocovariance least-squares[J]. SYSTEMS & CONTROL LETTERS,2022,162.
|
APA |
Kong,He,Sukkarieh,Salah,Arnold,Travis J.,Chen,Tianshi,&Zheng,Wei Xing.(2022).The noise covariances of linear Gaussian systems with unknown inputs are not uniquely identifiable using autocovariance least-squares.SYSTEMS & CONTROL LETTERS,162.
|
MLA |
Kong,He,et al."The noise covariances of linear Gaussian systems with unknown inputs are not uniquely identifiable using autocovariance least-squares".SYSTEMS & CONTROL LETTERS 162(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论