中文版 | English
题名

The noise covariances of linear Gaussian systems with unknown inputs are not uniquely identifiable using autocovariance least-squares

作者
通讯作者Kong,He
发表日期
2022-04-01
DOI
发表期刊
ISSN
0167-6911
EISSN
1872-7956
卷号162
摘要
Existing works in optimal filtering for linear Gaussian systems with arbitrary unknown inputs assume perfect knowledge of the noise covariances in the filter design. This is impractical and raises the question of whether and under what conditions one can identify the noise covariances of linear Gaussian systems with arbitrary unknown inputs. This paper considers the above identifiability question using the correlation-based autocovariance least-squares (ALS) approach. In particular, for the ALS framework, we prove that (i) the process noise covariance Q and the measurement noise covariance R cannot be uniquely jointly identified; (ii) neither Q nor R is uniquely identifiable, when the other is known. This not only helps us to have a better understanding of the applicability of existing filtering frameworks under unknown inputs (since almost all of them require perfect knowledge of the noise covariances) but also calls for further investigation of alternative and more viable noise covariance methods under unknown inputs. Especially, it remains to be explored whether the noise covariances are uniquely identifiable using other correlation-based methods. We are also interested to use regularization for noise covariance estimation under unknown inputs, and investigate the relevant property guarantees for the covariance estimates. The above topics are the main subjects of our current and future work.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Chinese University of Hong Kong, Shenzhen[2014.0003.23] ; [PF. 01.000249]
WOS研究方向
Automation & Control Systems ; Operations Research & Management Science
WOS类目
Automation & Control Systems ; Operations Research & Management Science
WOS记录号
WOS:000788749000008
出版者
EI入藏号
20221011757255
EI主题词
Correlation methods ; Gaussian distribution
EI分类号
Probability Theory:922.1 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85125697580
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/302171
专题工学院_机械与能源工程系
作者单位
1.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Australian Centre for Field Robotics,University of Sydney,NSW,2006,Australia
3.Independent researcher,Tucson,85756,United States
4.School of Data Science and Shenzhen Research Institute of Big Data,The Chinese University of Hong Kong,Shenzhen,518172,China
5.School of Computer,Data and Mathematical Sciences,Western Sydney University,Sydney,NSW 2751,Australia
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Kong,He,Sukkarieh,Salah,Arnold,Travis J.,et al. The noise covariances of linear Gaussian systems with unknown inputs are not uniquely identifiable using autocovariance least-squares[J]. SYSTEMS & CONTROL LETTERS,2022,162.
APA
Kong,He,Sukkarieh,Salah,Arnold,Travis J.,Chen,Tianshi,&Zheng,Wei Xing.(2022).The noise covariances of linear Gaussian systems with unknown inputs are not uniquely identifiable using autocovariance least-squares.SYSTEMS & CONTROL LETTERS,162.
MLA
Kong,He,et al."The noise covariances of linear Gaussian systems with unknown inputs are not uniquely identifiable using autocovariance least-squares".SYSTEMS & CONTROL LETTERS 162(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kong,He]的文章
[Sukkarieh,Salah]的文章
[Arnold,Travis J.]的文章
百度学术
百度学术中相似的文章
[Kong,He]的文章
[Sukkarieh,Salah]的文章
[Arnold,Travis J.]的文章
必应学术
必应学术中相似的文章
[Kong,He]的文章
[Sukkarieh,Salah]的文章
[Arnold,Travis J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。