中文版 | English
题名

Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image

作者
通讯作者Zhang,Xiaoqing
发表日期
2022-04-01
DOI
发表期刊
ISSN
1532-0464
EISSN
1532-0480
卷号128
摘要

Nuclear cataract (NC) is an age-related cataract disease. Cataract surgery is an effective method to improve the vision and life quality of NC patients. Anterior segment optical coherence tomography (AS-OCT) images are noninvasive, reproductive, and easy-measured, which can capture opacity clearly on the lens nucleus region. However, automatic AS-OCT-based NC classification research has not been extensively studied. This paper proposes a novel convolutional neural network (CNN) framework named Adaptive Feature Squeeze Network (AFSNet) to classify NC severity levels automatically. In the AFSNet, we construct an adaptive feature squeeze module to dynamically squeeze local feature representations and update the relative importance of global feature representations, which is comprised of a squeeze block and a global adaptive pooling operation. We conduct comprehensive experiments on a clinical AS-OCT image dataset and a public OCT images dataset, and results demonstrate our method's effectiveness and superiority over strong baselines and previous state-of-the-art methods. Furthermore, this paper also demonstrates that CNNs achieve better NC classification results on the nucleus region than the lens region. We also adopt the class activation mapping (CAM) technique to localize the discriminative regions that CNN models learned, which enhances the interpretability of classification results.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Provincial Depart-ment of Education[2020ZDZX3043] ; Guangdong Provincial Key Labo-ratory[2020B121201001] ; National Natural Science Foundation of China[8210072776] ; Shenzhen Natural Science Fund[JCYJ20200109140820699] ; Stable Support Plan Program[20200925174052004]
WOS研究方向
Computer Science ; Medical Informatics
WOS类目
Computer Science, Interdisciplinary Applications ; Medical Informatics
WOS记录号
WOS:000767877600007
出版者
EI入藏号
20221011745848
EI主题词
Convolutional neural networks ; Image classification ; Image segmentation ; Optical tomography
EI分类号
Data Processing and Image Processing:723.2 ; Optical Devices and Systems:741.3
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85125590448
来源库
Scopus
引用统计
被引频次[WOS]:17
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/302172
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Tomey Corporation,Nagoya,Japan
3.Zhongshan Ophthalmic Center,Sun Yat-sen University,Guangzhou,China
4.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China
5.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
6.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang,Xiaoqing,Xiao,Zunjie,Higashita,Risa,et al. Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image[J]. JOURNAL OF BIOMEDICAL INFORMATICS,2022,128.
APA
Zhang,Xiaoqing.,Xiao,Zunjie.,Higashita,Risa.,Hu,Yan.,Chen,Wan.,...&Liu,Jiang.(2022).Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image.JOURNAL OF BIOMEDICAL INFORMATICS,128.
MLA
Zhang,Xiaoqing,et al."Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image".JOURNAL OF BIOMEDICAL INFORMATICS 128(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Adaptive feature squ(5698KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Xiaoqing]的文章
[Xiao,Zunjie]的文章
[Higashita,Risa]的文章
百度学术
百度学术中相似的文章
[Zhang,Xiaoqing]的文章
[Xiao,Zunjie]的文章
[Higashita,Risa]的文章
必应学术
必应学术中相似的文章
[Zhang,Xiaoqing]的文章
[Xiao,Zunjie]的文章
[Higashita,Risa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。