题名 | Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image |
作者 | |
通讯作者 | Zhang,Xiaoqing |
发表日期 | 2022-04-01
|
DOI | |
发表期刊 | |
ISSN | 1532-0464
|
EISSN | 1532-0480
|
卷号 | 128 |
摘要 | Nuclear cataract (NC) is an age-related cataract disease. Cataract surgery is an effective method to improve the vision and life quality of NC patients. Anterior segment optical coherence tomography (AS-OCT) images are noninvasive, reproductive, and easy-measured, which can capture opacity clearly on the lens nucleus region. However, automatic AS-OCT-based NC classification research has not been extensively studied. This paper proposes a novel convolutional neural network (CNN) framework named Adaptive Feature Squeeze Network (AFSNet) to classify NC severity levels automatically. In the AFSNet, we construct an adaptive feature squeeze module to dynamically squeeze local feature representations and update the relative importance of global feature representations, which is comprised of a squeeze block and a global adaptive pooling operation. We conduct comprehensive experiments on a clinical AS-OCT image dataset and a public OCT images dataset, and results demonstrate our method's effectiveness and superiority over strong baselines and previous state-of-the-art methods. Furthermore, this paper also demonstrates that CNNs achieve better NC classification results on the nucleus region than the lens region. We also adopt the class activation mapping (CAM) technique to localize the discriminative regions that CNN models learned, which enhances the interpretability of classification results. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Guangdong Provincial Depart-ment of Education[2020ZDZX3043]
; Guangdong Provincial Key Labo-ratory[2020B121201001]
; National Natural Science Foundation of China[8210072776]
; Shenzhen Natural Science Fund[JCYJ20200109140820699]
; Stable Support Plan Program[20200925174052004]
|
WOS研究方向 | Computer Science
; Medical Informatics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Medical Informatics
|
WOS记录号 | WOS:000767877600007
|
出版者 | |
EI入藏号 | 20221011745848
|
EI主题词 | Convolutional neural networks
; Image classification
; Image segmentation
; Optical tomography
|
EI分类号 | Data Processing and Image Processing:723.2
; Optical Devices and Systems:741.3
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85125590448
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:17
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/302172 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.Tomey Corporation,Nagoya,Japan 3.Zhongshan Ophthalmic Center,Sun Yat-sen University,Guangzhou,China 4.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China 5.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 6.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Xiaoqing,Xiao,Zunjie,Higashita,Risa,et al. Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image[J]. JOURNAL OF BIOMEDICAL INFORMATICS,2022,128.
|
APA |
Zhang,Xiaoqing.,Xiao,Zunjie.,Higashita,Risa.,Hu,Yan.,Chen,Wan.,...&Liu,Jiang.(2022).Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image.JOURNAL OF BIOMEDICAL INFORMATICS,128.
|
MLA |
Zhang,Xiaoqing,et al."Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image".JOURNAL OF BIOMEDICAL INFORMATICS 128(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Adaptive feature squ(5698KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论