题名 | Shape derivatives in differential forms I: an intrinsic perspective |
作者 | |
通讯作者 | Li, Jingzhi |
发表日期 | 2013-12
|
DOI | |
发表期刊 | |
ISSN | 0373-3114
|
EISSN | 1618-1891
|
卷号 | 192期号:6页码:1077-1098 |
摘要 | We treat Zolesio's velocity method of shape calculus using the formalism of differential forms, in particular, the notion of Lie derivative. This provides a unified and elegant approach to computing even higher-order shape derivatives of domain and boundary integrals and avoids the tedious manipulations entailed by classical vector calculus. Hitherto unknown expressions for shape Hessians can be derived with little effort. The perspective of differential forms perfectly fits second-order boundary value problems (BVPs). We illustrate its power by deriving the shape derivatives of solutions to second-order elliptic BVPs with Dirichlet, Neumann and Robin boundary conditions. A new dual mixed variational approach is employed in the case of Dirichlet boundary conditions. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
; Mathematics
|
WOS记录号 | WOS:000327101300006
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/30286 |
专题 | 南方科技大学 理学院_数学系 |
作者单位 | 1.ETH, SAM, CH-8092 Zurich, Switzerland 2.South Univ Sci & Technol China, Shenzhen 518055, Peoples R China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Hiptmair, Ralf,Li, Jingzhi. Shape derivatives in differential forms I: an intrinsic perspective[J]. ANNALI DI MATEMATICA PURA ED APPLICATA,2013,192(6):1077-1098.
|
APA |
Hiptmair, Ralf,&Li, Jingzhi.(2013).Shape derivatives in differential forms I: an intrinsic perspective.ANNALI DI MATEMATICA PURA ED APPLICATA,192(6),1077-1098.
|
MLA |
Hiptmair, Ralf,et al."Shape derivatives in differential forms I: an intrinsic perspective".ANNALI DI MATEMATICA PURA ED APPLICATA 192.6(2013):1077-1098.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1007s10231-012-02(294KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论