中文版 | English
题名

Stochastic learning in oxide binary synaptic device for neuromorphic computing

作者
通讯作者Wong, H. -S. Philip
发表日期
2013
DOI
发表期刊
ISSN
1662-453X
EISSN
1662-453X
卷号7
摘要

Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
973 Program in China[2011CBA00602]
WOS研究方向
Neurosciences & Neurology
WOS类目
Neurosciences
WOS记录号
WOS:000346567300184
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:116
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/30395
专题工学院_电子与电气工程系
作者单位
1.Stanford Univ, Ctr Integrated Syst, Dept Elect Engn, Stanford, CA 94305 USA
2.Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ USA
3.Peking Univ, Inst Microelect, Beijing 100871, Peoples R China
4.Agcy Sci Technol & Res, Inst Microelect, Singapore, Singapore
5.South Univ Sci & Technol China, Dept Elect & Elect Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Yu, Shimeng,Gao, Bin,Fang, Zheng,et al. Stochastic learning in oxide binary synaptic device for neuromorphic computing[J]. Frontiers in Neuroscience,2013,7.
APA
Yu, Shimeng,Gao, Bin,Fang, Zheng,Yu, Hongyu,Kang, Jinfeng,&Wong, H. -S. Philip.(2013).Stochastic learning in oxide binary synaptic device for neuromorphic computing.Frontiers in Neuroscience,7.
MLA
Yu, Shimeng,et al."Stochastic learning in oxide binary synaptic device for neuromorphic computing".Frontiers in Neuroscience 7(2013).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
fnins-07-00186.pdf(1298KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu, Shimeng]的文章
[Gao, Bin]的文章
[Fang, Zheng]的文章
百度学术
百度学术中相似的文章
[Yu, Shimeng]的文章
[Gao, Bin]的文章
[Fang, Zheng]的文章
必应学术
必应学术中相似的文章
[Yu, Shimeng]的文章
[Gao, Bin]的文章
[Fang, Zheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: fnins-07-00186.pdf
格式: Adobe PDF
文件名: fnins-07-00186.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。