中文版 | English
题名

Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks

作者
通讯作者Zhang, Zhenguo
发表日期
2022-02-01
DOI
发表期刊
ISSN
2169-9313
EISSN
2169-9356
卷号127期号:2
摘要

For decades, monitoring and identification of the dynamic stress states of rock masses in reservoirs have been challenging tasks owing to the lack of effective observation and analysis methods. In this study, we used deep learning methods to identify whether acoustic emission (AE) signals of rock fractures are created by different loading conditions. We performed Brazilian split and uniaxial compressive experiments on six different engineering materials, and we obtained the AE waveforms. To take advantage of the powerful image processing capabilities of convolutional neural networks (CNNs), we transformed the AE waveforms into time-frequency images. We used five types of CNN to identify the time-frequency images of the AE signals created in the Brazilian split and uniaxial compressive experiments. As a result, we found that Xception model had the highest recognition accuracy. We analyzed the basis of the CNN models to recognize the AE signals using local interpretable model-agnostic explanations and found that the Xception model mainly used the patterns of the low-energy region of the time-frequency images to determine the loading modes of the rock fractures. Furthermore, the high-energy time-frequency region had little effect on recognition. The findings of this work can aid in automatically monitoring the dynamic stress states of fracture areas in reservoir formations and ensure the safety of oil and gas resource exploitation.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[42004036,41922024] ; Shenzhen Science and Technology Program[
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000765643700007
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/308547
专题理学院_地球与空间科学系
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China
2.Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing, Peoples R China
3.Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Song, Zhenlong,Zhang, Zhenguo,Zhang, Gongheng,et al. Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks[J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,2022,127(2).
APA
Song, Zhenlong,Zhang, Zhenguo,Zhang, Gongheng,Huang, Jie,&Wu, Mingyang.(2022).Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks.JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,127(2).
MLA
Song, Zhenlong,et al."Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks".JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH 127.2(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
7 JGR Solid Earth - (3811KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song, Zhenlong]的文章
[Zhang, Zhenguo]的文章
[Zhang, Gongheng]的文章
百度学术
百度学术中相似的文章
[Song, Zhenlong]的文章
[Zhang, Zhenguo]的文章
[Zhang, Gongheng]的文章
必应学术
必应学术中相似的文章
[Song, Zhenlong]的文章
[Zhang, Zhenguo]的文章
[Zhang, Gongheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。