题名 | Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks |
作者 | |
通讯作者 | Zhang, Zhenguo |
发表日期 | 2022-02-01
|
DOI | |
发表期刊 | |
ISSN | 2169-9313
|
EISSN | 2169-9356
|
卷号 | 127期号:2 |
摘要 | For decades, monitoring and identification of the dynamic stress states of rock masses in reservoirs have been challenging tasks owing to the lack of effective observation and analysis methods. In this study, we used deep learning methods to identify whether acoustic emission (AE) signals of rock fractures are created by different loading conditions. We performed Brazilian split and uniaxial compressive experiments on six different engineering materials, and we obtained the AE waveforms. To take advantage of the powerful image processing capabilities of convolutional neural networks (CNNs), we transformed the AE waveforms into time-frequency images. We used five types of CNN to identify the time-frequency images of the AE signals created in the Brazilian split and uniaxial compressive experiments. As a result, we found that Xception model had the highest recognition accuracy. We analyzed the basis of the CNN models to recognize the AE signals using local interpretable model-agnostic explanations and found that the Xception model mainly used the patterns of the low-energy region of the time-frequency images to determine the loading modes of the rock fractures. Furthermore, the high-energy time-frequency region had little effect on recognition. The findings of this work can aid in automatically monitoring the dynamic stress states of fracture areas in reservoir formations and ensure the safety of oil and gas resource exploitation. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[42004036,41922024]
; Shenzhen Science and Technology Program[
|
WOS研究方向 | Geochemistry & Geophysics
|
WOS类目 | Geochemistry & Geophysics
|
WOS记录号 | WOS:000765643700007
|
出版者 | |
ESI学科分类 | GEOSCIENCES
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:16
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/308547 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China 2.Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing, Peoples R China 3.Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands |
第一作者单位 | 地球与空间科学系 |
通讯作者单位 | 地球与空间科学系 |
第一作者的第一单位 | 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Song, Zhenlong,Zhang, Zhenguo,Zhang, Gongheng,et al. Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks[J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,2022,127(2).
|
APA |
Song, Zhenlong,Zhang, Zhenguo,Zhang, Gongheng,Huang, Jie,&Wu, Mingyang.(2022).Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks.JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,127(2).
|
MLA |
Song, Zhenlong,et al."Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks".JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH 127.2(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
7 JGR Solid Earth - (3811KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论