中文版 | English
题名

TraceBERT-A Feasibility Study on Reconstructing Spatial-Temporal Gaps from Incomplete Motion Trajectories via BERT Training Process on Discrete Location Sequences

作者
通讯作者Resch, Bernd; Shi, Yuhui
发表日期
2022-02-01
DOI
发表期刊
EISSN
1424-8220
卷号22期号:4
摘要
Trajectory data represent an essential source of information on travel behaviors and human mobility patterns, assuming a central role in a wide range of services related to transportation planning, personalized recommendation strategies, and resource management plans. The main issue when dealing with trajectory recordings, however, is characterized by temporary losses in the data collection, causing possible spatial-temporal gaps and missing trajectory segments. This is especially critical in those use cases based on non-repetitive individual motion traces, when the user's missing information cannot be directly reconstructed due to the absence of historical individual repetitive routes. Inserted in the context of location-based trajectory modeling, we tackle the problem by proposing a technical parallelism with the natural language processing domain. Specifically, we introduce the use of the Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art language representation model, into the trajectory processing research field. By training deep bidirectional representations from unlabeled location sequences, jointly conditioned on both left and right context, we derive an explicit predicted estimation of the missing locations along the trace. The proposed framework, named TraceBERT, was tested on a real-world large-scale trajectory dataset of short-term tourists, exploring an effective attempt of adapting advanced language modeling approaches into mobility-based applications and demonstrating a prominent potential on trajectory reconstruction over traditional statistical approaches.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号
WOS:000769415300001
出版者
EI入藏号
20220811691021
EI主题词
Behavioral research ; Information management ; Large dataset ; Location ; Modeling languages ; Trajectories
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Social Sciences:971
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/313181
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
2.Univ Salzburg, Dept Geoinformat Z GIS, A-5020 Salzburg, Austria
3.Harvard Univ, Ctr Geog Anal, Cambridge, MA 02138 USA
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Crivellari, Alessandro,Resch, Bernd,Shi, Yuhui. TraceBERT-A Feasibility Study on Reconstructing Spatial-Temporal Gaps from Incomplete Motion Trajectories via BERT Training Process on Discrete Location Sequences[J]. SENSORS,2022,22(4).
APA
Crivellari, Alessandro,Resch, Bernd,&Shi, Yuhui.(2022).TraceBERT-A Feasibility Study on Reconstructing Spatial-Temporal Gaps from Incomplete Motion Trajectories via BERT Training Process on Discrete Location Sequences.SENSORS,22(4).
MLA
Crivellari, Alessandro,et al."TraceBERT-A Feasibility Study on Reconstructing Spatial-Temporal Gaps from Incomplete Motion Trajectories via BERT Training Process on Discrete Location Sequences".SENSORS 22.4(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Crivellari, Alessandro]的文章
[Resch, Bernd]的文章
[Shi, Yuhui]的文章
百度学术
百度学术中相似的文章
[Crivellari, Alessandro]的文章
[Resch, Bernd]的文章
[Shi, Yuhui]的文章
必应学术
必应学术中相似的文章
[Crivellari, Alessandro]的文章
[Resch, Bernd]的文章
[Shi, Yuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。