题名 | TraceBERT-A Feasibility Study on Reconstructing Spatial-Temporal Gaps from Incomplete Motion Trajectories via BERT Training Process on Discrete Location Sequences |
作者 | |
通讯作者 | Resch, Bernd; Shi, Yuhui |
发表日期 | 2022-02-01
|
DOI | |
发表期刊 | |
EISSN | 1424-8220
|
卷号 | 22期号:4 |
摘要 | Trajectory data represent an essential source of information on travel behaviors and human mobility patterns, assuming a central role in a wide range of services related to transportation planning, personalized recommendation strategies, and resource management plans. The main issue when dealing with trajectory recordings, however, is characterized by temporary losses in the data collection, causing possible spatial-temporal gaps and missing trajectory segments. This is especially critical in those use cases based on non-repetitive individual motion traces, when the user's missing information cannot be directly reconstructed due to the absence of historical individual repetitive routes. Inserted in the context of location-based trajectory modeling, we tackle the problem by proposing a technical parallelism with the natural language processing domain. Specifically, we introduce the use of the Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art language representation model, into the trajectory processing research field. By training deep bidirectional representations from unlabeled location sequences, jointly conditioned on both left and right context, we derive an explicit predicted estimation of the missing locations along the trace. The proposed framework, named TraceBERT, was tested on a real-world large-scale trajectory dataset of short-term tourists, exploring an effective attempt of adapting advanced language modeling approaches into mobility-based applications and demonstrating a prominent potential on trajectory reconstruction over traditional statistical approaches. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS研究方向 | Chemistry
; Engineering
; Instruments & Instrumentation
|
WOS类目 | Chemistry, Analytical
; Engineering, Electrical & Electronic
; Instruments & Instrumentation
|
WOS记录号 | WOS:000769415300001
|
出版者 | |
EI入藏号 | 20220811691021
|
EI主题词 | Behavioral research
; Information management
; Large dataset
; Location
; Modeling languages
; Trajectories
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Social Sciences:971
|
ESI学科分类 | CHEMISTRY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/313181 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China 2.Univ Salzburg, Dept Geoinformat Z GIS, A-5020 Salzburg, Austria 3.Harvard Univ, Ctr Geog Anal, Cambridge, MA 02138 USA |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Crivellari, Alessandro,Resch, Bernd,Shi, Yuhui. TraceBERT-A Feasibility Study on Reconstructing Spatial-Temporal Gaps from Incomplete Motion Trajectories via BERT Training Process on Discrete Location Sequences[J]. SENSORS,2022,22(4).
|
APA |
Crivellari, Alessandro,Resch, Bernd,&Shi, Yuhui.(2022).TraceBERT-A Feasibility Study on Reconstructing Spatial-Temporal Gaps from Incomplete Motion Trajectories via BERT Training Process on Discrete Location Sequences.SENSORS,22(4).
|
MLA |
Crivellari, Alessandro,et al."TraceBERT-A Feasibility Study on Reconstructing Spatial-Temporal Gaps from Incomplete Motion Trajectories via BERT Training Process on Discrete Location Sequences".SENSORS 22.4(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论