中文版 | English
题名

Soil Moisture Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization

作者
通讯作者Zhan, Yulin
发表日期
2022-02-01
DOI
发表期刊
EISSN
1424-8220
卷号22期号:4
摘要
Soil moisture content (SMC) plays an essential role in geoscience research. The SMC can be retrieved using an artificial neural network (ANN) based on remote sensing data. The quantity and quality of samples for ANN training and testing are two critical factors that affect the SMC retrieving results. This study focused on sample optimization in both quantity and quality. On the one hand, a sparse sample exploitation (SSE) method was developed to solve the problem of sample scarcity, resultant from cloud obstruction in optical images and the malfunction of in situ SMC-measuring instruments. With this method, data typically excluded in conventional approaches can be adequately employed. On the other hand, apart from the basic input parameters commonly discussed in previous studies, a couple of new parameters were optimized to improve the feature description. The Sentinel-1 SAR and Landsat-8 images were adopted to retrieve SMC in the study area in eastern Austria. By the SSE method, the number of available samples increased from 264 to 635 for ANN training and testing, and the retrieval accuracy could be markedly improved. Furthermore, the optimized parameters also improve the inversion effect, and the elevation was the most influential input parameter.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号
WOS:000769051200001
出版者
EI入藏号
20220911716178
EI主题词
Geometrical optics ; Moisture determination ; Radar imaging ; Remote sensing ; Soil moisture ; Synthetic aperture radar
EI分类号
Soils and Soil Mechanics:483.1 ; Radar Systems and Equipment:716.2 ; Light/Optics:741.1 ; Moisture Measurements:944.2
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/313192
专题工学院_环境科学与工程学院
作者单位
1.Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.North China Inst Aerosp Engn, Sch Remote Sensing & Informat Engn, Langfang 065000, Peoples R China
4.Beijing Inst Space Long March Vehicle, Beijing 100076, Peoples R China
5.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Liu, Qixin,Gu, Xingfa,Chen, Xinran,et al. Soil Moisture Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization[J]. SENSORS,2022,22(4).
APA
Liu, Qixin.,Gu, Xingfa.,Chen, Xinran.,Mumtaz, Faisal.,Liu, Yan.,...&Zhan, Yulin.(2022).Soil Moisture Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization.SENSORS,22(4).
MLA
Liu, Qixin,et al."Soil Moisture Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization".SENSORS 22.4(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Qixin]的文章
[Gu, Xingfa]的文章
[Chen, Xinran]的文章
百度学术
百度学术中相似的文章
[Liu, Qixin]的文章
[Gu, Xingfa]的文章
[Chen, Xinran]的文章
必应学术
必应学术中相似的文章
[Liu, Qixin]的文章
[Gu, Xingfa]的文章
[Chen, Xinran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。